Today: Dynamic Programming I (of 4)
- memoization & subproblems; bottom up
- Fibonacci
- shortest paths
 \{ examples \}

Dynamic programming: (DP) - big idea, hard, yet simple
- powerful algorithmic design technique
- large class of seemingly exponential problems
 have a polynomial solution ("only") via DP
- particularly for optimization problems (min/max)
 (e.g. shortest paths)

\[DP \approx \text{careful brute force} \]
\[DP \approx \text{recursion + "re-use"} \]

History: Richard E. Bellman (1920-1984)
"Bellman... explained that he invented the name 'dynamic programming' to hide the fact that he was doing mathematical research at RAND under a Secretary of Defense who 'had a pathological fear and hatred of the term, research.' He settled on the term 'dynamic programming' because it would be difficult to give a 'pejorative meaning' and because 'It was something not even a Congressman could object to.'" [John Rust 2006]
Fibonacci numbers: \(F_1 = F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \)

- goal: compute \(F_n \)

Naive algorithm: follow recursive definition

\[
\text{fib}(n):
\begin{cases}
 \text{if } n \leq 2: & f = 1 \\
 \text{else: } & f = \text{fib}(n-1) + \text{fib}(n-2) \\
 \text{return } f
\end{cases}
\]

\[\Rightarrow T(n) = T(n-1) + T(n-2) + O(1) \geq F_n \approx \varphi^n \geq 2T(n-2) + O(1) \geq 2^n/2\text{ EXPONENTIAL - BAD!}
\]

Memoized DP algorithm: remember, remember!

\[
\text{memo} = \emptyset
\]

\[
\text{fib}(n):
\begin{cases}
 \text{if } n \text{ in memo: return memo}[n] \\
 \text{if } n \leq 2: & f = 1 \\
 \text{else: } & f = \text{fib}(n-1) + \text{fib}(n-2) \\
 \text{memo}[n] = f \\
 \text{return } f
\end{cases}
\]

\[\Rightarrow \text{fib}(k) \text{ only recurses first time called, } \forall k \\
\Rightarrow \text{only } n \text{ nonmemoized calls: } k = n, n-1, \ldots, 1 \\
- \text{memoized calls free (}O(1)\text{ time)} \\
\Rightarrow O(1) \text{ time per call (ignoring recursion) POLYNOMIAL - GOOD!}
\]
DP ≈ recursion + memoization
- memoize (remember) & re-use solutions to subproblems that help solve problem
- in Fibonacci, subproblems are \(F_1, F_2, \ldots, F_n \)

\[\Rightarrow \text{time} = \# \text{subproblems} \cdot \frac{\text{time/subproblem}}{\text{per subproblem}} \]
- Fibonacci: \(n \) \Rightarrow \(\Theta(1) \approx \Theta(n) \)
 ignore recursion!

Bottom-up DP algorithm:

```
fib = ??
for k in [1, 2, \ldots, n]:
    if k <= 2: f = 1
    else: f = fib[k-1] + fib[k-2]
    fib[k] = f
return fib[n]
```

\(\Theta(1) \) \(\Theta(n) \)

- exactly the same computation as memoized DP (recursion "unrolled")
- in general: topological sort of subproblem dependency DAG
- practically faster: no recursion
- analysis more obvious
- can save space: just remember last 2 fibs \Rightarrow \(\Theta(1) \)

[sidetext: there is also an \(\Theta(n^2) \)-time algorithm for Fibonacci via different techniques]
Shortest paths:
- recursive formulation:
 \[S(s,v) = \min \{ S(s,u) + w(u,v) \mid (u,v) \in E \} \]
- memoized DP algorithm:
 takes infinite time if cycles! (kinda necessary to handle neg. cycles)
- works for directed acyclic graphs in \(O(V+E)\)
 effectively DFS/Topological sort + Bellman-Ford round rolled into a single recursion

*Subproblem dependency should be acyclic

- more subproblems, remove cyclic dependence:
 \[S_k(s,v) = \text{shortest } s \rightarrow v \text{ path using } \leq k \text{ edges} \]
- recurrence:
 \[S_k(s,v) = \min \{ S_{k-1}(s,u) + w(u,v) \mid (u,v) \in E \} \]
 \[S_\emptyset(s,v) = \infty \text{ for } s \neq V \] \{base case\}
 \[S_k(s,s) = \emptyset \text{ for any } k \] \{if no neg. cycles\}
- goal: \(S(s,v) = S_{|V|-1}(s,v) \)

- memoize
- time: \(\# \text{subproblems} \cdot \frac{\text{time/subproblem}}{v \leftarrow |V|, |V| \rightarrow k} \)
 \[\in \Theta(\text{indegree}(V)) \text{ for } S_k(s,v) \]

 \[\Rightarrow \text{time} = \Theta \left(V \sum_{v \in V} \text{indegree}(v) \right) = \Theta(VE) \]

Bellman-Ford!
Guessing: how to design recurrence
- want shortest $s \rightarrow v$ path
- what is the last edge in path? dunno
- guess it's (u,v)
 \Rightarrow path is shortest $s \rightarrow u$ path + edge (u,v) by optimal substructure
 \Rightarrow cost is $\delta_{k-1}(s,u) + w(u,v)$ another subproblem
- to find best guess, try all & use best \Rightarrow LVI choices

* $\begin{align*}
- & \text{key: small (polynomial) \# possible guesses per subproblem} \\
- & \text{typically this dominates time/subproblem}
\end{align*}$

* $\text{DP \approx recursion + memoization + guessing}$

DAG view:
- like replicating graph
to represent time
- converting shortest paths in graph
 \Rightarrow shortest paths in DAG

* $\text{DP \approx shortest paths in some DAG}$