Outline: Search II: DFS (II of 2)
- depth-first search
- edge classification
- cycle testing
- topological sort

Recall:
- graph search: explore a graph
e.g. find a path from start vertex s
to a desired vertex
- adjacency lists: array Adj of $|V|$ linked lists
 - for each vertex $u \in V$, $\text{Adj}[u]$ stores u's neighbors, i.e. $\{v \in V \mid (u,v) \in E\}$
 - just outgoing edges if directed
- e.g. Adj

- BFS: explore level-by-level from s
 - find shortest paths
Depth-first search (DFS): like exploring a maze

- follow path until you get stuck
- backtrack along breadcrumbs until reach unexplored neighbor
- recursively explore
- careful not to repeat a vertex

\[\text{parent}^+ = \{s: \text{None}\} \]

\[
\text{DFS-visit}(s, \text{Adj})::
\]

\[
\text{for } v \text{ in Adj}[s]:
\]

\[
\text{if } v \text{ not in parent:}
\]

\[
\text{parent}^+[v] = s
\]

\[
\text{DFS-visit}(v, \text{Adj})
\]

\[
\text{DFS}(V, \text{Adj}):
\]

\[
\text{parent}^+ = \{\}
\]

\[
\text{for } s \text{ in } V:
\]

\[
\text{if } s \text{ not in parent:}
\]

\[
\text{parent}^+[s] = \text{None}
\]

\[
\text{DFS-visit}(s, \text{Adj})
\]

search from start vertex \(s \)
(only see stuff reachable from \(s \))

explore entire graph
(could do same to extend BFS)
Example:

```
        S1
       /   \
  a     b  c
 /     /   |
v     v   v
 d     e  f
```

forward edge *back edge* *cross edge*

Edge classification:
- tree edges (formed by parent)
- nontree edges

back edge: to ancestor

forward edge: to descendant

cross edge (to another subtree)

- to compute this classification, mark nodes for duration they are "on the stack"
- only tree & back edges in undir. graph

Analysis:
- DFS-visit gets called with a vertex s only once (because then parent[s] set)
- \Rightarrow time in DFS-visit $= \sum_{s \in V} |\text{Adj}[s]| = O(E)$
- DFS outer loop adds just $O(V)$
- $\Rightarrow O(V+E)$ time (linear time)
Cycle detection: graph G has a cycle \iff DFS has a back edge

Proof: (\Leftarrow) tree edges is a cycle

back edge: to tree ancestor

(\Rightarrow) consider first visit to cycle:

- before visit to v_i finishes, will visit v_{i+1} (& finish):
 will consider edge (v_i, v_{i+1})
 \Rightarrow visit v_{i+1} now or already did
- before visit to v_0 finishes, will visit v_k (& didn't before)
- before visit to v_k (or v_0) finishes, will see (v_k,v_0) as back edge.
Job scheduling: given directed acyclic graph (DAG), where vertices represent tasks & edges represent dependencies, order tasks without violating dependencies

Source = vertex with no incoming edges = schedulable at beginning (A, G, I)

Attempt: BFS from each source:
- from A finds A, BH, C, F
- from D finds D, BE, CF
- from G finds G, H
- from I finds I

Topological sort: reverse of DFS finishing times (time at which DFS-Visit(v) finishes)

\[
\begin{align*}
&\text{DFS-Visit}(v) \\
&\text{order. append}(v) \\
&\text{order. reverse}(\text{order})
\end{align*}
\]
Correctness: for any edge \((u,v)\),
\(u\) ordered before \(v\)
i.e. \(v\) finished before \(u\)

\[
\begin{array}{c}
\text{If } u \text{ visited before } v: \\
\text{before visit to } u \text{ finishes, will visit } v \text{ (via } (u,v) \text{ or otherwise)}
\end{array}
\]
\(\Rightarrow \) \(v\) finishes before \(u\)

\[
\begin{array}{c}
\text{If } v \text{ visited before } u: \\
\text{graph is acyclic}
\end{array}
\]
\(\Rightarrow \) \(u\) can't be reached from \(v\)
\(\Rightarrow \) visit to \(v\) finishes before visiting \(u\)
\]