Lecture Overview

• Review: Binary Search Trees
• Importance of being balanced
• Balanced BSTs
 – AVL trees
 • definition
 • rotations, insert
 – Other balanced trees
Binary Search Trees (BSTs)

• Each node x has:
 – key[x]
 – Pointers: left[x], right[x], $p[x]$

• Property: for any node x:
 – For all nodes y in the left subtree of x: key[y] ≤ key[x]
 – For all nodes y in the right subtree of x: key[y] ≥ key[x]
BST for runway reservation system

- \(R = (37, 41, 46, 49, 56) \) current landing times

- remove \(t \) from the set when a plane lands
 \(R = (41, 46, 49, 56) \)

- add new \(t \) to the set if no other landings are scheduled within \(< 3\) minutes from \(t \)
 - 44 => reject (46 in \(R \))
 - 53 => ok

- delete, insert, conflict checking take \(O(h) \), where \(h \) is the height of the tree
The importance of being balanced

for \(n \) nodes:

Perfectly Balanced

\[h = \Theta(\log n) \]

Path

\[h = \Theta(n) \]
Balanced BST Strategy

• Augment every node with some property
• Define a local invariant on property
• Show (prove) that invariant guarantees $\Theta(\log n)$ height
• Design algorithms to maintain property and the invariant
AVL Trees: Definition
[Adelson-Velskii and Landis’62]

• **Property**: for every node, store its height (“augmentation”)
 – Leaves have height 0
 – NIL has “height” -1

• **Invariant**: for every node x, the heights of its left child and right child differ by at most 1
AVL trees have height $\Theta(\log n)$

- Let n_h be the minimum number of nodes of an AVL tree of height h
- We have $n_h \geq 1 + n_{h-1} + n_{h-2}$
 - $\Rightarrow n_h > 2n_{h-2}$
 - $\Rightarrow n_h > 2^{h/2}$
 - $\Rightarrow h < 2 \log n_h$
- Better bounds?
Rotations maintain the inorder ordering of keys:

- $a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c.$

LEFT-ROTATE(1)
Insertions/Deletions

- Insert new node u as in the simple BST
 - Can create imbalance
- Work your way up the tree, restoring the balance
- Similar issue/solution when deleting a node
Balancing

• Let x be the lowest “violating” node

• Assume the right child of x is deeper than the left child of x (x is “right-heavy”)

• Scenarios:
 – Case 1: Right child y of x is right-heavy
 – Case 2: Right child y of x is balanced
 – Case 3: Right child y of x is left-heavy
Case 1: y is right-heavy

\[\text{LEFT-ROTATE}(x) \]
Case 2: y is balanced

Same as Case 1
Case 3: \(y \) is left-heavy

Need to do more …
Case 3: y is left-heavy

And we are done!
Examples of insert/balancing

Insert(23)

x = 29: left-left case

Done

x = 65: left-right case

Done
Balanced Search Trees …

- AVL trees (Adelson-Velsii and Landis 1962)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Scapegoat trees (Galperin and Rivest 1993)
- Treaps (Seidel and Aragon 1996)
- ….