Outline

• Decision vs optimization problems
• P, NP, co-NP
• Reductions between problems
• NP-complete problems
• Beyond NP-completeness

Readings CLRS 34
Decision problems

- *A decision problem* asks us to check if something is true (possible answers: ‘yes’ or ‘no’)

- **Examples:**
 - **PRIMES**
 - Instance: A positive integer n
 - Question: is n prime?
 - **COMPOSITES NUMBERS**
 - Instance: A positive integer n
 - Question: are there integers $k>1$ and $p>1$ such that $n=kp$?
Optimization problems

• An optimization problem asks us to find, among all feasible solutions, one that maximizes or minimizes a given objective.

• Example:
 – single shortest-path problem
 • Instance: Given a weighted graph G, two nodes s and t of G.
 • Problem: find a simple path from s to t of minimum total length.
 – Possible answers: ‘a shortest path from s to t ’ or ‘no path exists between s and $t’.

Decision version of an optimization

• A decision version of a given optimization problem can easily be defined with the help of a bound on the value of feasible solutions

• Previous example:
 – SINGLE SPP
 • Instance: A weighted graph G, two nodes s and t of G, and a bound b
 • Question: is there a simple path from s to t of length at most b?
Optimization vs Decision version

- Clearly, if one can solve an optimization problem (in polynomial time), then one can answer the decision version (in polynomial time).
- Conversely, by doing binary search on the bound b, one can transform a polynomial time answer to a decision version into a polynomial time algorithm for the corresponding optimization problem.
- In that sense, these are essentially equivalent. We will then restrict ourselves to decision problems.
The classes P and NP

- P is the class of all decision problems that can be solved in polynomial time.
- NP is the class of all decision problems that can be verified in polynomial time:
 - any “yes-instances” can be checked in polynomial time with the help of a short certificate.
- Clearly $P \subseteq NP$
The class co-NP

• co-NP is the class of all decision problems whose no answers can be verified in polynomial time:
 – any “no-instances” can be checked in polynomial time with the help of a short certificate.

• So clearly $P \subseteq NP \cap \text{co-NP}$
Reductions between problems

• A polynomial-time reduction from a decision problem \(A \) to a decision problem \(B \) is a procedure that transforms any instance \(I_A \) of \(A \) into an instance \(I_B \) of \(B \) with the following characteristics:
 – the transformation takes polynomial time
 – the answer for \(I_A \) is yes iff the answer for \(I_B \) is yes

• We say that \(A \leq_p B \)
Reductions between problems

- if $A \leq_p B$, then one can turn an algorithm for B into an algorithm for A:

 algorithm for A

 ![Diagram showing reductions between problems]

 - Reductions are of course useful for optimization problems as well
VERTEX-COVER \(\leq_p \) DOMINATING SET

- **VERTEX-COVER**
 - Instance: a graph \(G \) and a positive integer \(k \)
 - Question: is there a *vertex cover* (i.e. set of vertices “covering” all edges) of size \(k \) or less?

- **DOMINATING SET**
 - Instance: a graph \(G \) and a positive integer \(p \)
 - Question: is there a *dominating set* (i.e. set of vertices “covering” all vertices) of size \(p \) or less?
VERTEX-COVER \leq_P DOMINATING SET

algorithm for A

instance x of A

instance $f(x)$ of B

g

yes

no

g
VERTEX-COVER \leq_p CLIQUE

• **VERTEX-COVER**
 – Instance: a graph G and a positive integer k
 – Question: is there a vertex cover (i.e. set of vertices “covering” all edges) of size k or less?

• **CLIQUE**
 – Instance: a graph G and a positive integer p
 – Question: is there a clique (i.e. set of vertices all adjacent to each other) of size p or more?
VERTEX-COVER \leq_P CLIQUE

• Consider a third problem:

INDEPENDENT SET

– Instance: a graph G and a positive integer q
– Question: is there an independent set (i.e. set of vertices no-one adjacent to each other) of size q or more?

• For a graph $G=(V,E)$, the following statements are equivalent:

– V' is a *vertex cover* for G
– $V \setminus V'$ is an *independent set* for G
– $V \setminus V'$ is a *clique* in the complement G^c of G
Reductions - consequences

- Def: \(A \leq_p B \): There is a procedure that transforms any instance \(I_A \) of \(A \) into an instance \(I_B \) of \(B \) with the following characteristics:
 - the transformation takes polynomial time
 - the answer for \(I_A \) is yes iff the answer for \(I_B \) is yes

- If \(B \) can be solved in polynomial time, and \(A \leq_p B \), then \(A \) can be solved in polynomial time.

- If \(A \) is “hard”, then \(B \) should be hard too
The class NP-complete

• A decision problem X is NP-complete if
 – X belongs to NP
 – $A \leq_p X$ for all A in NP

• Theorem[Cook-Karp-Levin]: Vertex-Cover is NP-complete

• Corollary: Dominating Set and Clique are NP-complete, and so are many other problems (Knapsack, Hamiltonian circuit, Longest path problem, etc.)
One view of various classes ...
Beyond NP-completeness

• On the negative side, there are decision problems that can be proved \textit{not} to be in NP
 – decidable but not in NP
 – undecidable (ouch !!)

• On the positive side, some “hard” optimization problems can become easier to approximate ... unfortunately not all ...