Outline

- “Numerics II” - algorithms for operations on large numbers
- Today:
 - quick review: irrationals; large number operations: addition, multiplication, division
 - cryptography (CLRS 31)
 - motivations
 - primality testing
 - modular exponentiation
 - integer factorization
Computing \sqrt{h} to lots of digits ... why?

\[1.414213562373095048801688724209698078569671875376948073176679\ldots\]

question: pattern?
Computing \sqrt{h} to lots of digits ... why?

- geometry problem

 - $BD = 1$

 - what is AD?

$AD = AC - CD = 500,000,000,000 - \sqrt{500,000,000,000,000^2 - 1}$

- question: first non-trivial digits?

 (Taylor’s expansion $\sqrt{1 + x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$)

$=> AD = 10^{-12} + 10^{-36} + 2.10^{-60} + 5.10^{-84}$
Cryptography

- long history
- modern development
 - public-key cryptography
 - some designed as early as 1973 – UK – but classified top-secret and revealed publicly in 1998
 - RSA (1978) for “Rivest, Shamir, and Adleman” is the first algorithm suitable for signing and encryption – widely used in electronic commerce protocols
Public-key cryptography

• key generation
 – public key
 – private key

• encryption

• decryption
RSA: key generation

- choose two prime number p and q
- compute $n=pq$
- compute $f(n)=(p-1)(q-1)$
- choose e, $1 < e < f(n)$, and $gcd(e,f(n))=1$ (e and $f(n)$ are co-prime)
 - e is released as the public key exponent
- find $d=e^{-1} \mod f(n)$
 - d is kept as the private key exponent
RSA: encryption

- Alice transmits her public key \((n,e)\) to Bob
- Bob wishes to send a message “Hello Alice!” to Alice
 - he turns the message into an integer \(m\), \(0 < m < n\), using an agreed upon protocol (a padding scheme)
 - he computes \(c = m^e \mod n\)
 - he transmits \(c\) to Alice
RSA: decryption

- Alice can recover m from c by using her private key exponent d as follows:
 $$m = c^d \mod n$$

- Given m, she can recover the message “Hello Alice!” by reversing the padding scheme
RSA: example

• key generation:
 – choose \(p = 61 \) and \(q = 53 \)
 – compute \(n=pq=3233 \)
 – compute \(f(n)=(p-1)(q-1)=3120 \)
 – choose a prime number \(e \) not a divisor of \(3120 \), say \(e = 17 \)
 – find \(d = e^{-1} \mod f(n)=2753 \)
 – the public key is \((n,e)=(3233,17)\)
 – the private key is \((n,d)=(3233,2753)\)

• encryption: \(m = 65 \) is encrypted as
 \[c = 65^{17} \mod 3233 = 2790 \]

• decryption: \(c = 2790 \) is decrypted as
 \[m = 2790^{2753} \mod 3233 = 65 \]
RSA: when does it work?

• keys generation
 – $n = pq$ needs to be very large (e.g. at least 200 digits) so that both the public and private key exponents are large enough.
 – p and q should come out of a “random” process (i.e., not easily guessed).
 – needs an efficient way to check if such generated p and q are indeed primes.

• encryption
 – given large n, e, and any m needs an efficient way of computing $c = m^e \mod n$

• decryption
 – given large n, d, and any c needs an efficient way of computing $m = c^d \mod n$
 – given large n, e, should be hard to find d
 – given large n, e, c, should be hard to find m
Modular exponentiation

• Given \(n, c, d \) calculate \(m = c^d \mod n \)

• How?
 – divide and conquer: raising powers with repeated squaring
 – efficient when using the binary representation of \(d \)
 – (e.g., \(d = 560 = \langle 1, 0, 0, 0, 1, 1, 0, 0, 0, 0 \rangle \))
Modular exponentiation II

- Given n, c, d calculate $m = c^d \mod n$
- procedure computes $c^i \mod n$ as i is increased by doublings, incrementing from 0 to d:

 - $i=0; m=1$; let $d = <d_k, d_{k-1}, ..., d_0>$
 - for $j=k$ downto 0
 - $i = 2i$
 - $m=m^2 \mod n$
 - if $d_j = 1$
 » $i = i+1$
 » $m=m\cdot c \mod n$
 - return m
Modular exponentiation III

- Given n, c, d calculate $m = c^d \mod n$

 - $i=0; m=1$; let $d = <d_k, d_{k-1}, \ldots, d_0>$
 - for $j=k$ downto 0
 - $i = 2i$
 - $m = m \times m \mod n$
 - if $d_j = 1$
 - $i = i + 1$
 - $m = m \times c \mod n$
 - return m

- if n, c, d are k-bits number, total number of bit operations is $O(k^3)$
Primality testing

• Given an integer \(p \), is \(p \) a prime number?

• Wilson’s theorem:
 \[
 p \text{ is prime if and only if } p \text{ divides } (p-1)!+1
 \]
 – is nice
 – but useless for our purpose ...

 (computing \((p-1)! +1\) and testing if \(p \) divides \((p-1)!+1\) become computationally prohibitive for large \(p \))
Primality testing I

• Given an integer p, is p a prime number?
• Basic Algorithm:
 “check whether any integer m from 2 to $\lfloor \sqrt{p} \rfloor$ divides p (skipping even integers). If none of them do, p is prime.”
• complexity?
 – $\Theta(\sqrt{p})$
 – exponential in the length of p
Primality testing II

• Given an integer p, is p a prime number?
• Randomization to the rescue !!
• Pseudoprimes
 – def: p is a base-a pseudoprime if p is composite and $a^{p-1} = 1 \mod p$
• Thm: if p is prime then $a^{p-1} = 1 \mod p$ for all $1 \leq a \leq p-1$ (from Fermat)
• converse is “almost” true
Primality testing III

• Given an integer p, is p a prime number?
• randomization to the rescue !!
• “pseudo” prime testing:

– input p:
– if $2^{p-1} \neq 1 \mod p$
 • then return composite // definitely
– else return prime // we hope ...
Primality testing IV

- input p
- if $2^{p-1} \not\equiv 1 \mod p$
 - then return composite // definitely
- else return prime // we hope ...

will make a mistake only if p is a base-2 pseudoprime, and this is “rare” ...
- only 22 values of p less than 10,000 for which it makes a mistake (341, 561, 645 ...)
- probability of a mistake for a randomly chosen 1024-bit number is $\leq 10^{-41}$
Primality testing V

- A randomized testing

- input \(p \):
- choose a random number \(2 \leq a \leq p-2 \)
- if \(a^{p-1} \neq 1 \mod p \)
 - then return composite // definitely
 - else return prime // almost surely
Integer factorization

• Given an integer n, decompose it into a product of primes.

• Unless P=NP, this seems to be a computationally hard problem (and a good news to the cryptographers)