Lecture overview

Shortest paths IV

– review and analysis of Djikstra
– speeding it up
 • faster special cases/implementation
 • one source-one target
 – bidirectional
 – goal-directed searches
Dijkstra’s algorithm

\[d[s] \leftarrow 0\]
for each \(v \in V - \{s\}\)
 do \(d[v] \leftarrow \infty\)
\[S \leftarrow \emptyset\]
\[Q \leftarrow V\]
while \(Q \neq \emptyset\)
 do \(u \leftarrow \text{Extract-Min}(Q)\)
 \(S \leftarrow S \cup \{u\}\)
 for each \(v \in \text{Adj}[u]\)
 do if \(d[v] > d[u] + w(u, v)\)
 then \(d[v] \leftarrow d[u] + w(u, v)\)
\{(Implicit \ DECREASE-KEY)\}

initialization

relaxation steps
Correctness — main argument

Theorem. Dijkstra’s algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof.

It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S.

• Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in $V - S$ along a shortest path from s to u, and let x be its predecessor:

S, just before adding u.
Analysis of Dijkstra

\[\text{while } Q \neq \emptyset \]
\[\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \]
\[S \leftarrow S \cup \{u\} \]
\[\text{for each } v \in \text{Adj}[u] \]
\[\text{do if } d[v] > d[u] + w(u, v) \]
\[\text{then } d[v] \leftarrow d[u] + w(u, v) \]

\[\text{DECREASE-KEY} \]

Time = $\Theta(n) \cdot T_{\text{EXTRACT-MIN}} + \Theta(m) \cdot T_{\text{DECREASE-KEY}}$
Analysis of Dijkstra (continued)

Time = $\Theta(n) \cdot T_{\text{EXTRACT-MIN}} + \Theta(m) \cdot T_{\text{DECREASE-KEY}}$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{EXTRACT-MIN}}$</th>
<th>$T_{\text{DECREASE-KEY}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)$</td>
<td>$O(m \lg n)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(\lg n)$</td>
<td>$O(1)$</td>
<td>$O(n \lg n + m)$</td>
</tr>
</tbody>
</table>

amortized

not covered in 6.006
Special cases of edge weights

- if edge weights are integral and bounded by a small constant C
- use an array of lists ($nC+1$ “buckets”) for implementing the priority queue Q

- $T_{\text{EXTRACT-MIN}}$ and $T_{\text{DECREASE-KEY}}$ take $O(1)$
- $Time_Total$ is then $O(n+m)$
Single-source \(s \), **Single-target** \(t \), **S.P.P.**

\[
d[s] \leftarrow 0
\]

for each \(v \in V - \{s\} \)
do \(d[v] \leftarrow \infty \)

\(S \leftarrow \emptyset \)
\(Q \leftarrow V \)
while \(Q \neq \emptyset \)
do \(u \leftarrow \text{Extract-Min}(Q) \)
\(S \leftarrow S \cup \{u\} \)
for each \(v \in Adj[u] \)
do if \(d[v] > d[u] + w(u, v) \)
then \(d[v] \leftarrow d[u] + w(u, v) \)

initialization

stop whenever \(u = t \) !!

relaxation steps
Bi-directional Search

forward search

backward search
Bi-directional Djikstra

- Alternate forward search from s, backward search from t (follow edges backward)
- $d_f(u)$ distances for forward search; $d_b(u)$ distances for backward search
- Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue of both searches, Q_f and Q_b
Bi-directional Dijkstra, example

Forward
- $d_f(s) = 0$
- $d_f(w) = 5$
- $d_f(u) = 3$
- $d_f(u') = 6$

Backward
- $d_f(s) = 0$
- $d_f(u) = 3$
- $d_f(u') = 6$
- $d_f(t) = 10$

Deleted from both queues

so terminate!
Bi-directional Dijkstra, example

Forward:
- $d_f(s) = 0$
- $d_f(u) = 3$
- $d_f(w) = 5$
- u' not in queue
- $d_f(u') = 6$
- s deleted from Forward queue

Backward:
- $d_f(s) = 0$
- $d_f(u) = 3$
- $d_f(w) = 5$
- u' not in queue
- $d_f(u') = 6$
- s deleted from Backward queue

Common nodes:
- u
- u'
- t
- w

Deleted:
- s from Forward
- s from Backward
- u' from Forward
- u' from Backward

Deleted from both queues:
- s
- u'

Solution:
- $d_f(t) = 10$
- $d_f(w) = 5$
- $d_f(u') = 6$
- $d_f(u) = 3$
- $d_f(s) = 0$
Bi-directional Dijkstra, example

For the forward search:
- \(d_f(s) = 0 \)
- \(d_f(u) = 3 \)
- \(d_f(w) = 5 \)
- \(d_f(t) = 10 \)

For the backward search:
- \(d_b(t) = 0 \)
- \(d_b(u) = 6 \)
- \(d_b(w) = 5 \)
- \(d_b(s) = 10 \)

\(d_f(s) = 0 \) is deleted from the forward queue.
\(d_b(s) = 10 \) is deleted from the backward queue.

Deleting these from both queues causes the algorithm to terminate.

For the forward search:
- \(d_f(u) = 3 \)
- \(d_f(w) = 5 \)
- \(d_f(t) = 10 \)

For the backward search:
- \(d_b(u) = 6 \)
- \(d_b(w) = 5 \)
- \(d_b(t) = 0 \)

\(d_f(u) = 3 \) is deleted from the forward queue.
\(d_b(u) = 6 \) is deleted from the backward queue.

Deleting these from both queues causes the algorithm to terminate.
Goal-directed search or A*

Idea: use a “potential function” $\lambda_t(u)$ over vertices to make the target vertex t “more attractive”

Implementation: Modify edge weights as follow:
$$w^*(u,v) = w(u,v) - \lambda_t(u) + \lambda_t(v)$$
Goal directed search or A*, cont.

Modify edge weights with potential function over vertices:

\[w^*(u,v) = w(u,v) - \lambda_t(u) + \lambda_t(v) \]

⇒ for any path \(p \) between \(s \) and \(t \) we have:

\[w^*(p) = w(p) - \lambda_t(s) + \lambda_t(t) \]

⇒ a path from \(s \) to \(t \) is a shortest path under \(w^* \) iff it is a shortest path under \(w \)
Feasible potential and example

• Potential $\lambda_t(u)$ is feasible if
 $$w^*(u,v) = w(u,v) - \lambda_t(u) + \lambda_t(v) \geq 0$$
• As a result can use Dijkstra with w^*

• Examples:
 – Euclidean plane
 – Landmarks