Lecture 11
Prof. Patrick Jaillet
Lecture Overview

Searching I: Graph Search and Representations

Readings: CLRS 22.1-22.3, B.4
Graphs

• $G = (V, E)$
• V a set of vertices
 – usually number denoted by n
• $E \subseteq V \times V$ a set of edges (pairs of vertices)
 – usually number denoted by m
 – note $m < n(n-1) = O(n^2)$
• Flavors:
 – pay attention to order: directed graph
 – ignore order: undirected graph
 • Then only $n(n-1)/2$ possible edges
Examples

- Undirected
 - $V = \{a, b, c, d\}$
 - $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}\}$

- Directed
 - $V = \{a, b, c\}$
 - $E = \{(a, c), (a, b), (b, c), (c, b)\}$
Instances/Applications

• Web
 – crawling
• Social Network
 – friend finder
• Computer Networks
 – internet routing
 – connectivity
• Game states
 – rubik’s cube, chess
Pocket Cube

- $2 \times 2 \times 2$ Rubik’s cube
- Start with any colors
- Moves are quarter turns of any face
- “Solve” by making each side one color
Configuration Graph

- One vertex for each state
- One edge for each move from a vertex
 - 6 faces to twist
 - 3 nontrivial ways to twist (1/4, 2/4, 3/4)
 - So, 18 edges out of each state
- Solve cube by finding a path (of moves) from initial state (vertex) to “solved” state
Combinatorics

• State for each arrangement and orientation of 8 cubelets
 – 8 cubelets in each position: $8!$ Possibilities
 – Each cube has 3 orientations: 3^8 Possibilities
 – Total: $8! \times 3^8 = 264,539,320$ vertices
• But divide out 24 orientations of whole cube
• And there are three separate connected components (twist one cube out of place 3 ways)
• Result: 3,674,160 states to search
GeoGRAPHy

- One start vertex
- 6 others reachable by one 90° turn
- From those, 27 others by another
- And so on

<table>
<thead>
<tr>
<th>distance</th>
<th>90°</th>
<th>90° and 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>321</td>
</tr>
<tr>
<td>4</td>
<td>534</td>
<td>1847</td>
</tr>
<tr>
<td>5</td>
<td>2,256</td>
<td>9,992</td>
</tr>
<tr>
<td>6</td>
<td>8,969</td>
<td>50,136</td>
</tr>
<tr>
<td>7</td>
<td>33,058</td>
<td>227,526</td>
</tr>
<tr>
<td>8</td>
<td>114,149</td>
<td>870,072</td>
</tr>
<tr>
<td>9</td>
<td>360,508</td>
<td>1,887,748</td>
</tr>
<tr>
<td>10</td>
<td>930,588</td>
<td>623,800</td>
</tr>
<tr>
<td>11</td>
<td>1,350,852</td>
<td>2,644</td>
</tr>
<tr>
<td>12</td>
<td>782,536</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>90,280</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>276</td>
<td></td>
</tr>
</tbody>
</table>
Representation

- To solve graph problems, must examine graph
- So need to represent in computer
- Four representations with pros/cons
 - Adjacency lists (of neighbors of each vertex)
 - Incidence lists (of edges from each vertex)
 - Adjacency matrix (of which pairs are adjacent)
 - Implicit representation (as neighbor function)
Adjacency List

• For each vertex v, list its neighbors (vertices to which it is connected by an edge)
 – Array A of |V| linked lists
 – For v ∈ V, list A[v] stores neighbors \{u | (v,u) ∈ E\}
 – Directed graph only stores outgoing neighbors
 – Undirected graph stores edge in two places
• In python, A[v] can be hash table
 – v any hashable object
Example
• object for each vertex \(u \)
 – \(u.\)neighbors is list of neighbors for \(u \)

• incidence list: object for each edge \(e \)
 – \(u.\)edges = list of outgoing edges from \(u \)
 – \(e \) object has endpoints \(e.\)head and \(e.\)tail

• can store additional info per vertex or edge without hashing
Adjacency Matrix

• assume $V=\{1, \ldots, n\}$
• matrix $A=(a_{ij})$ is $n \times n$
 – row i, column j
 – $a_{ij} = 1$ if $(i,j) \in E$
 – $a_{ij} = 0$ otherwise
• (store as, e.g., array of arrays)
Example
Graph Algebra

- can treat adjacency matrix as matrix
- e.g., $A^2 =$ length-2 paths between vertices..
- [note: A^∞ gives pagerank of vertices..]
- undirected graph \rightarrow symmetric matrix
- [eigenvalues useful for many things, but---rarely used in graph algorithms]
Tradeoff: Space

• Adjacency lists use one list node per edge
 – And two machine words per node
 – So space is $\Theta(mw)$ bits ($m=$#edges, $w=$word size)
• Adjacency matrix uses n^2 entries
 – But each entry can be just one bit
 – So $\Theta(n^2)$ bits
• Matrix better only for very dense graphs
 – m near n^2
 – (Google can’t use matrix)
Tradeoff: Time

• Add edge
 – both data structures are O(1)
• Check “is there an edge from u to v”?
 – matrix is O(1)
 – adjacency list must be scanned
• Visit all neighbors of v (very common)
 – adjacency list is O(neighbors)
 – matrix is Θ(n)
• Remove edge
 – like find + add
Implicit representation

• Don’t store graph at all
• Implement function $\text{Adj}(u)$ that returns list of neighbors or edges of u
• Requires no space, use it as you need it
• And may be very efficient
• e.g., Rubik’s cube
Searching Graph

• We want to get from current Rubik state to “solved” state
• How do we explore?
Breadth First Search

• start with vertex v
• list all its neighbors (distance 1)
• then all their neighbors (distance 2)
• etc.

• algorithm starting at s:
 – define frontier F
 – initially $F=\{s\}$
 – repeat $F=$all neighbors of vertices in F
 – until all vertices found
Depth First Search

• Like exploring a maze
• From current vertex, move to another
• Until you get stuck
• Then backtrack till you find a new place to explore

• e.g “left-hand” rule
Problem: Cycles

- What happens if unknowingly revisit a vertex?
- BFS: get wrong notion of distance
- DFS: go in circles
- Solution: mark vertices
 - BFS: if you’ve seen it before, ignore
 - DFS: if you’ve seen it before, back up
Conclude

• Graphs: fundamental data structure
 – Directed and undirected
• 4 possible representations
• Basic methods of graph search

• Next time:
 – Formalize BFS and DFS
 – Runtime analysis
 – Applications