6.006 - Introduction to Algorithms

Lecture 9

Prof. Constantinos Daskalakis

CLRS: 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4.
Lecture Overview

Priority Queues
Heaps
Heapsort
Priority Queue

This is an *abstract datatype* implementing a set S of elements, each associated with a key, supporting the following operations:

- $\text{insert}(S, x)$: insert element x into set S
- $\text{max}(S)$: return element of S with largest key
- $\text{extract_max}(S)$: return element of S with largest key and remove it from S
- $\text{increase_key}(S, x, k)$: change the key-value of element x to the value k (assumed to be as large as current value)
Heap

An implementation of a priority queue. It is an array object, visualized as a nearly complete binary tree.

Heap Property: The key of a node is \geq than the keys of its children.
Visualizing an Array as a Tree

root of tree: first element in the array, corresponding to index = 1

If a node’s index is i then:

\[
\text{parent}(i) = \left\lfloor \frac{i}{2} \right\rfloor ; \text{ returns index of node's parent, e.g. parent(5)=2}
\]

\[
\text{left}(i) = 2i; \quad \text{returns index of node's left child, e.g. left(4)=8}
\]

\[
\text{right}(i) = 2i + 1; \quad \text{returns index of node's right child, e.g. right(4)=9}
\]
Visualizing an Array as a Tree

root of tree: first element in the array, corresponding to index = 1

If a node’s index is i *then:*

$$\text{parent}(i) = \left\lfloor \frac{i}{2} \right\rfloor ; \text{ returns index of node's parent, e.g. parent}(5) = 2$$

$$\text{left}(i) = 2i; \text{ returns index of node's left child, e.g. left}(4) = 8$$

$$\text{right}(i) = 2i + 1; \text{ returns index of node's right child, e.g. right}(4) = 9$$

Note: no pointers required! Height of a binary heap $O(\log_2 n)$.
Heap-Size Variable

For flexibility we may only need to consider the first few elements of an array as part of the heap.

The variable heap-size denotes the number of items of the array that are part of the heap:

A[1],..., A[heap-size];
Max-Heaps vs Min-Heaps

Max Heaps satisfy the Max-Heap Property

for all i, $A[i] \geq \max\{ A[left(i)] , A[right(i)] \}$

Min Heaps satisfy the Min-Heap Property

for all i, $A[i] \leq \min\{ A[left(i)] , A[right(i)] \}$
Operations with Heaps

build_max_heap: produce a max-heap from an unordered array in $O(n)$;

max_heapify: correct a single violation of the heap property occurring at the root of a subtree in $O(\log n)$;

insert, extract_max: $O(\log n)$

heapsort: sort an array of size n in $O(n \log n)$ using heaps
Max_heapify
Max_heapify

correct a single violation of the heap property occurring at the root of a subtree in $O(\log n)$;

Assume that the trees rooted at $\text{left}(i)$ and $\text{right}(i)$ are max-heaps, but element $A[i]$ violates the max-heap property;
 i.e. $A[i]$ is smaller than at least one of $A[\text{left}(i)]$ or $A[\text{right}(i)]$.

The goal is to correct the violation.

Do this by trickling element $A[i]$ down the tree, making the subtree rooted at index i a max-heap.
Max_heapify (Example)

MAX_HEAPIFY (A, 2)
heap_size[A] = 10
Max_heapify (Example)

Call MAX_HEAPIFY(A,4)
because max_heap property
is violated
Max_heapify (Example)

No more calls
Max_heapify (Pseudocode)

Max_heapify (A, i)

Find the index of the largest element among A[i], A[left(i)] and A[right(i)]

If this index is different than i, exchange A[i] with largest element; then recurse on subtree

IMPORTANT NOTE: If element A[i] is smaller than both A[left(i)] and A[right(i)], I insist on swapping it with the largest of the two and not with either one of them, arbitrarily.
Build_Max_heap
Build_Max_Heap(A)

Convert A[1...n] to a max heap.

Observation: Elements A[\lfloor n/2 \rfloor + 1 \ldots n] are leaves of the tree because $2i > n$, for all $i \geq \lfloor n/2 \rfloor + 1$

so heap property may only be violated at nodes 1...\lfloor n/2 \rfloor of the tree
Build_Max_Heap (Example Execution)

A: 4 1 3 2 16 9 10 14 8 7

MAX-HEAPIFY (A, 5)
no change
MAX-HEAPIFY (A, 4)
Build_MAX_Heap (Example Execution)
Build_Max_Heap (Example Execution)
Build_Max_Heap (Example Execution)

![Heap Diagram]

Running Time: Trivially $O(n \log n)$, since I need to Heapify $O(n)$ times.

Observe, however, that Heapify only pays $O(1)$ time for the nodes that are one level above the leaves, and in general $O(\ell)$ for the nodes that are ℓ levels above the leaves. \(\rightarrow\) $O(n)$ time overall!
Heapsort
Recall Naïve Algorithm..

Sorting Strategy:
Find largest element of array, place it in last position; then find the largest among the remaining elements, and place it next to the largest, etc...

In notation:

1. last_element = n;
4. last_element = last_element - 1;
5. Go to step 2

$O(n^2)$

We have a fast data structure for step 2! (which is also the most costly)
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
Heap-Sort

A: 4 1 3 2 16 9 10 14 8 7
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
2. Find maximum element; this is A[1];
3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
Heap-Sort

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)
Heap-Sort

heap_size = heap_size-1
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.
Heap-Sort

heap_size = 9
MAX_HEAPIFY (A, 1)
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
 children are max heaps. Run max_heapify to fix this.

6. Go to step 2.
Heap-Sort

MAX_HEAPIFY (A,1)
Heap-Sort

Max_Heapify(A,1)
Heap-Sort

and so on…
Heap-Sort

Running time:

after \(n \) iterations the Heap is empty

every iteration involves a swap and a heapify operation;

hence it takes \(O(\log n) \) time

Overall \(O(n \log n) \)
Discussion: Other operations?
Operations with Heaps

- **build_max_heap**: produce a max-heap from an unordered array in $O(n)$;

- **max_heapify**: correct a single violation of the heap property occurring at the root of a subtree in $O(\log n)$;

- **insert, extract_max**: $O(\log n)$

- **heapsort**: sort an array of size n in $O(n \log n)$ using heaps