Menu

- Problem: peak finding
 - 1 dimension
 - 2 dimensions

- Technique: *Divide and conquer*

- *details about the 1st pset in the end of the lecture*
Peak Finding: 1D

- Consider an array $A[1…n]$:

 \[
 \begin{array}{cccccccc}
 10 & 13 & 5 & 8 & 3 & 2 & 1 \\
 \end{array}
 \]

- An element $A[i]$ is a peak if it is not smaller than its neighbor(s). I.e.,
 - if $i \neq 1, n$: $A[i] \geq A[i-1]$ and $A[i] \geq A[i+1]$
 - If $i=n$: $A[n] \geq A[n-1]$

- Problem: find any peak.
Peak Finding: Ideas?

- **Algorithm I:**
 - Scan the array from left to right
 - Compare each $A[i]$ with its neighbors
 - Exit when found a peak

- **Complexity:**
 - Might need to scan all elements, so $T(n) = \Theta(n)$
Peak Finding: Ideas II?

- Algorithm II:
 - Consider the middle element of the array and compare with neighbors
 - Else \(A[n/2] \) is a peak!
 (since \(A[n/2-1] \leq A[n/2] \) and \(A[n/2] \geq A[n/2+1] \))
- Running time?
Algorithm II: Complexity
Algorithm II: Complexity

- We have

\[T(n) = T(n/2) + \Theta(1) \]

- Unraveling the recursion,

\[T(n) = \Theta(1) + \Theta(1) + \ldots + \Theta(1) = \Theta(\log n) \]

- \(\log n \) is much much much better than \(n \)!
Divide and Conquer

• Very powerful design tool:
 – *Divide* input into multiple disjoint parts
 – *Conquer* each of the parts separately (using recursive call)

• Occasionally, we need to *combine* results from different calls (not used here)
Peak Finding: 2D

- Consider a 2D array \(A[1\ldots n, 1\ldots m] \):

\[
\begin{array}{ccc}
10 & 8 & 5 \\
3 & 2 & 1 \\
7 & 13 & 4 \\
6 & 8 & 3
\end{array}
\]

- An element \(A[i] \) is a 2D peak if it is not smaller than its (at most 4) neighbors.

- Problem: find any 2D peak.
2D Peak Finding: Ideas?
Algorithm I: use the 1D algorithm

• Algorithm I:
 – For each column \(j \), find its *global* maximum \(B[j] \)
 – Apply 1D peak finder to find a peak (say \(B[j] \)) of \(B[1...m] \)
• Running time ?
 …is \(\Theta(n \cdot m) \)
• Correctness:
 – \(B[j] \) not smaller than \(B[j-1], B[j+1] \)
 – For any \(k \), \(B[k] \) not smaller than any element from the \(k \)-th column of \(A \)
 – Therefore, \(B[j] \) not smaller than any element from the columns \(j-1, j \) and \(j+1 \) of \(A \)
 – But this includes all neighbors of \(B[j] \) in \(A \), so \(B[j] \) is a peak in \(A \)
Algorithm I’: use the 1D algorithm

• Observation: 1D peak finder uses only $O(\log m)$ entries of B
• We can modify Algorithm I so that it only computes $B[j]$ when needed!
• Total time?
 …only $O(n \log m)$!
 – Need $O(\log m)$ entries $B[j]$
 – Each computed in $O(n)$ time
Algorithm II

- Pick middle column (\(j = m/2 \))
- Find global maximum \(a = A[i,m/2] \) in that column (and quit if \(m = 1 \))
- Compare \(a \) to \(b = A[i,m/2-1] \) and \(c = A[i,m/2+1] \)
 - If \(b > a \) then recurse on left columns
 - Else, if \(c > a \) then recurse on right columns
 - Else \(a \) is a 2D peak!
Algorithm II: Example

- Pick middle column (\(j = m/2 \))
- Find *global* maximum \(a = A[i,m/2] \) in that column (and quit if \(m=1 \))
- Compare \(a \) to \(b = A[i,m/2-1] \) and \(c = A[i,m/2+1] \)
- If \(b > a \)
 then recurse on left columns
- Else, if \(c > a \)
 then recurse on right columns
- Else \(a \) is a 2D peak!
Algorithm II: Correctness

- Claim: If \(b > a \), then there is a peak among the left columns
- Proof (by contradiction):
 - Assume no peak on the left
 - Then \(b \) must have a neighbor \(b_1 \) with higher value
 - And \(b_1 \) must have a neighbor \(b_2 \) with higher value
 - ...
 - We have to stay on the left side – why?
 - (because we cannot enter the middle column)
 - But at some point, we would run out the elements of the left columns
 - Hence, we have to find a peak at some point
Algorithm II: Complexity

• We have

\[T(n,m) = T(n, m/2) + \Theta(n) \]

Recursion

• Hence:

\[T(n,n) = \Theta(n) + \Theta(n) + \ldots + \Theta(n) = \Theta(n \log m) \]

Scanning middle column

\[\log_2 m \]
Faster than $O(n \log n)$?

- Idea:

 Reading only $O(n + m)$ elements, reduce an array of $n \times m$ candidates to an array of $n/2 \times m/2$ candidates.

- Pictorially:

 [Diagram showing the reduction of an array of candidates from $n \times m$ to $n/2 \times m/2$]

read only $O(n + m)$ elements
Faster than $O(n \log n)$?

- Hypothetical algorithm has recursion:

$$T(n, m) = T \left(\frac{n}{2}, \frac{m}{2} \right) + \Theta(n + m)$$

- Hence:

$$T(n, m) = \Theta(n + m) + \Theta \left(\frac{n + m}{2} \right) + \Theta \left(\frac{n + m}{4} \right) + \ldots + \Theta(1) = \Theta(n + m)$$
Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global max on the cross
Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global max on the cross
- if middle element done!
Towards a linear-time algorithm

What elements are useful to check?

- find global max on the cross
- if middle element done!
- o.w. two candidate sub-squares
- determine which one to pick by looking at its neighbors not on the cross (as in Algorithm II)

Claim: The sub-square chosen by the above procedure (if any), always contains a peak of the large square.

BUT: Claim 2: Not every peak of the chosen sub-square is necessarily a peak of the large square. Hence, it is hard to recurse…
First Problem Set

• out tonight, by 9pm
 – part A: theory, due at 11.59pm, Sept 21st
 – part B: implementation, due at 11.59pm, Sept 23rd

• deadline policy:
 – 6 days of credit can be used for delayed homework submission
 – at most 2 days can be used for the same deadline (total of 12 deadlines: 6psets x 2parts)

• details on the class website