Heap Algorithms

Parent(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the parent of i
// Running Time: $O(1)$
1 \text{if} \ i == 1 \ \text{return} \ \text{NULL}
2 \text{return} \ [i/2]

Left(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the left child of i
// Running Time: $O(1)$
1 \text{if} \ 2 \ast i \leq \text{heap-size}[A]
2 \ \text{return} \ 2 \ast i
3 \text{else return} \ \text{NULL}

Right(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the right child of i
// Running Time: $O(1)$
1 \text{if} \ 2 \ast i + 1 \leq \text{heap-size}[A]
2 \ \text{return} \ 2 \ast i + 1
3 \text{else return} \ \text{NULL}

Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: $O(\log n)$ where $n = \text{heap-size}[A] - i$
1 \ l \leftarrow \text{Left}(i)
2 \ r \leftarrow \text{Right}(i)
3 \text{if} \ l \leq \text{heap-size}[A] \ \text{and} \ A[l] > A[i]
4 \ large \leftarrow l
5 \text{else} \ large \leftarrow i
6 \text{if} \ r \leq \text{heap-size}[A] \ \text{and} \ A[r] < A[large]
7 \ large \leftarrow r
8 \text{if} \ large \neq i
9 \ \text{exchange} \ A[i] \ \text{and} \ A[large]
10 \ \text{Max-Heapify}(A, \text{LARGEST})

Build-Max-Heap(A)

// Input: A: an (unsorted) array
// Output: A modified to represent a heap.
// Running Time: $O(n)$ where $n = \text{length}[A]
1 \ \text{heap-size}[A] \leftarrow \text{length}[A]
2 \text{for} \ i \leftarrow \lfloor \text{length}[A]/2 \rfloor \ \text{downto} \ 1
3 \ \text{Max-Heapify}(A, i)
Heap-Increase-Key(A, i, key)

// Input: A: an array representing a heap, i: an array index, key: a new key greater than A[i]
// Output: A still representing a heap where the key of A[i] was increased to key
// Running Time: O(log n) where n = heap-size[A]
1 if key < A[i]
2 error(“New key must be larger than current key”)
3 A[i] ← key
4 while i > 1 and A[Parent(i)] < A[i]
5 exchange A[i] and A[Parent(i)]
6 i ← Parent(i)

Heap-Sort(A)

// Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
// Running Time: O(n log n) where n = length[A]
1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] and A[i]
4 heap-size[A] ← heap-size[A] − 1
5 Max-Heapify(A, 1)

Heap-Extract-Max(A)

// Input: A: an array representing a heap
// Output: The maximum element of A and A as a heap with this element removed
// Running Time: O(log n) where n = heap-size[A]
1 max ← A[1]
3 heap-size[A] ← heap-size[A] − 1
4 Max-Heapify(A, 1)
5 return max

Max-Heap-Insert(A, key)

// Input: A: an array representing a heap, key: a key to insert
// Output: A modified to include key
// Running Time: O(log n) where n = heap-size[A]
1 heap-size[A] ← heap-size[A] + 1
2 A[heap-size[A]] ← −∞
3 Heap-Increase-Key(A[heap-size[A]], key)
1 Overview

- Overview of Heaps
- Heap Algorithms (Group Exercise)
- More Heap Algorithms!
- Master Theorem Review

2 Heap Overview

Things we can do with heaps are:

- insert
- max
- extract_max
- increase_key
- build them
- sort with them

(Max-)Heap Property For any node, the keys of its children are less than or equal to its key.

3 Heap Algorithms (Group Exercise)

We split into three groups and took 5 or 10 minutes to talk. Then each group had to work their example algorithm on the board.
Group 1: Max-Heapify and Build-Max-Heap

Given the array in Figure 1, demonstrate how Build-Max-Heap turns it into a heap. As you do so, make sure you explain:

- How you visualize the array as a tree (look at the Parent and Child routines).
- The Max-Heapify procedure and why it is $O(\log(n))$ time.
- That early calls to Max-Heapify take less time than later calls.

The correct heap is also shown in Figure 1.

![Figure 1: The array to sort and the heap you should find.](#)
Group 2: **Heap-Increase-Key**

For the heap shown in Figure 2 (which Group 1 will build), show what happens when you use Heap-Increase-Key to increase key 2 to 22. Make sure you argue why what you’re doing is $O(\log n)$. (Hint: Argue about how much work you do at each level)

![Figure 2: The heap on which to increase a key. You should increase the key of the bottom left node (2) to be 22.](image-url)
Group 3: Heap-Sort

Given the heap shown in Figure 3 (which Groups 1 and 2 will build for you), show how you use it to sort. You do not need to explain the Max-Heapify or the Build-Max-Heap routine, but you should make sure you explain why the runtime of this algorithm is $O(n \log n)$. Remember the running time of Max-Heapify is $O(\log n)$.

Figure 3: Sort this heap.
4 More Heap Algorithms

Note Heap-Extract-Max and Max-Heap-Insert procedures since we didn’t discuss them in class:

Heap-Extract-Max(A)
1 \(max \leftarrow A[1] \)
2 \(A[1] \leftarrow A[\text{heap-size}[A]] \)
3 \(\text{heap-size}[A] \leftarrow \text{heap-size}[A] - 1 \)
4 \(\text{MAX-HEAPIFY}(A, 1) \)
5 \(\text{return } max \)

Max-Heap-Insert(A, key)
1 \(\text{heap-size}[A] \leftarrow \text{heap-size}[A] + 1 \)
2 \(A[\text{heap-size}[A]] \leftarrow -\infty \)
3 \(\text{HEAP-INCREASE-KEY}(A[\text{heap-size}[A]], \text{key}) \)

5 Running Time of Build-Max-Heap

Trivial Analysis: Each call to MAX-HEAPIFY requires \(\log(n) \) time, we make \(n \) such calls \(\Rightarrow O(n \log n) \).

Tighter Bound: Each call to MAX-HEAPIFY requires time \(O(h) \) where \(h \) is the height of node \(i \).

Therefore running time is

\[
\sum_{h=0}^{\log n} \frac{n}{2^h + 1} \times O(h) = O \left(n \sum_{h=0}^{\log n} \frac{h}{2^h} \right)
\]

\[
= O \left(n \sum_{h=0}^{\log n} \frac{h}{2^h} \right)
\]

\[
= O(n)
\]

Note \(\sum_{h=0}^{\infty} \frac{h}{2^h} = 2 \).

6 Proving Build-Max-Heap Using Loop Invariants

(We didn’t get to this in this week’s recitation, maybe next time).

Loop Invariant: Each time through the for loop, each node greater than \(i \) is the root of a max-heap.

Initialization: At the first iteration, each node larger than \(i \) is at the root of a heap of size 1, which is trivially a heap.
Maintainance: Since the children of i are larger than i, by our loop invariant, the children of i are roots of max-heaps. Therefore, the requirement for MAX-HEAPIFY is satisfied and, at the end of the loop, index i also roots a heap. Since we decrement i by 1 each time, the invariant holds.

Termination: At termination, $i = 0$ so $i = 1$ is the root of a max-heap and therefore we have created a max-heap.

Discussion: What is the loop invariant for HEAP-SORT? (All keys greater than i are sorted).

Initialization: Trivial.

Maintainance: We always remove the largest value from the heap. We can call MAX-HEAPIFY because we have shrunk the size of the heap so that the root’s children are root’s of good heaps (although the root is not the root of a good heap).

Termination: $i = 0$

7 Master Theorem Review: More Examples

```
TRAVERS-Tree(T)
1 if left-child(root[T]) == NULL and right-child(root[T]) == NULL return
2 output left-child(root[T]), right-child(root[T])
3 TRAVERS-Tree(right-child(root[T]))
4 TRAVERS-Tree(left-child(root[T]))
```

Recurrence is $T = 2T(n/2) + O(1)$. $a = 2$, $b = 2$, $n^{\log_b(a)} = n$, $f(n) = 1$. Master Theorem Case 1, Running Time $O(1)$.

```
MULTIPLY(x, y)
1 n ← max(|x|, |y|) // |x| is size of x in bits
2 if n = 1 return xy
3 xL ← x[1 : n/2], xR ← x[n/2 + 1 : n], yL ← y[1 : n/2], yR ← y[n/2 + 1 : n]
4 P_1 = MULTIPLY(x_L, y_L)
5 P_2 = MULTIPLY(x_R, y_R)
6 P_3 = MULTIPLY(x_L + x_R, y_L + y_R)
7 return 2^n P_1 + 2^{n/2} (P_3 - P_1 - P_2) + P_2
```

Recurrence Relation: $T(n) = 3T(n/2) + O(n)$ (Note: Addition takes linear time in number of bits). $a = 3$, $b = 2$, $n^{\log_b(a)} = n^{\log_b(2)}$, $f(n) = O(n)$, Case 1 of Master Theorem, $O(n^{\log_2(3)})$
MatrixMultiply(X, Y)
1 n ← sizeof(X) // Assume X and Y are the same size and square
2 if n = 1, return XY
3 // Split X and Y into four quadrants:
 A ← UpperLeft(X), B ← UpperRight(X), C ← LowerLeft(X), D ← LowerRight(X)
 E ← UpperLeft(Y), F ← UpperRight(Y), G ← LowerLeft(Y), H ← LowerRight(Y)
4 UL ← MatrixMultiply(A, E) + MatrixMultiply(B, G)
5 UR ← MatrixMultiply(A, F) + MatrixMultiply(B, H)
6 LL ← MatrixMultiply(C, E) + MatrixMultiply(D, G)
7 LR ← MatrixMultiply(C, F) + MatrixMultiply(D, H)
8 return matrix with UL as upper left quadrant, UR as upper right, LL as lower left, LR as lower right.

Recurrence Relation: \(T(n) = 8T(n/2) + O(n^2) \). \(a = 8, b = 2, n^{\log_b(a)} = n^3, f(n) = n^2 \). Case 1 of the Master Theorem, \(O(n^3) \).