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Today

• The Toolchain

• Starting a Project

• iPhone Application Structure

• Objective-C Crash Course

•Data Persistence with CoreData
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The iPhone Toolchain
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XCode
Objective-C, GDB

Interface Builder
Graphical UI Development

Instruments
Profiling, Leak Finding

Simulator
Testing
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Starting a Project
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Your Project
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iPhone Simulator
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The Debug View
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The Debug View
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The iPhone Application Structure
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Linked Frameworks
Graphics, sound, bluetooth, etc
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The Executable
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Targets (different build settings)
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Resources
Images, sounds, data, IB files
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Boilerplate Code
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Your App’s Code

These folders, called groups are 
just abstractions to help you 
organize your project -- they 
don’t even exist in the 
filesystem. 

Rearrange however you want.
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UI-Driven Programming

Nearly everything in your entire project is 
essentially just a callback.

int main(int argc, char *argv[]) {
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    int retVal = UIApplicationMain(argc, argv, nil, nil);
    [pool release];
    return retVal;
}

This is the entire main routine!

main.m
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UI-Driven Programming

So where is your hook to implement code?

... the applicationDidFinishLaunching callback

- (void)applicationDidFinishLaunching:(UIApplication *)application {    
    
    // Override point for customization after app launch    

! [window makeKeyAndVisible];
}

UntitledAppDelegate.m
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UI-Driven Programming

UIApplication

UIAppDelegate
- (void)applicationDidFinishLaunching:(UIApplication *)application 
{    

   
     [window makeKeyAndVisible];
}

UI Driven

Initialize your User Interface

After which point your app is almost entirely
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Objective-C
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C

Smalltalk-80

Objective C

Simula 67

C++

Objective C 2.0

2006

1983

1983

1980

1971

1967

Perl
1987

Ruby
1993

Java
1995

Python
1991

History

Source: 
Computer Languages Timeline
http://www.levenez.com/lang/
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Objective-C

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management
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Primitives

The usual C Types 

int, float, ...  

It’s own boolean (ObjC forked before C99)

BOOL

Some special types

id, Class, SEL, IMP

Takes values NO=0 and YES=1

nil is used instead of null.
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Strings

Always use (NSString *) instead of C Strings 
unless you know what you’re doing!!

Inline

Assigned

If you accidentally leave out the @, expect to crash!

@"This is an inline string";

NSString *str = @"This is assigned to a variable";
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NSLog

While you’re getting to know Objective-C, 

NSLog

is your best friend.

(Or just use the debugger)
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Exercise 1 - See, it’s like C 

- (void)applicationDidFinishLaunching:(UIApplication *)application {    
    
! int i;
! for (i=0; i<10; i++) {
! ! NSLog(@"Hello, word!");
! }
!
! [window makeKeyAndVisible];

}

Monday, January 11, 2010



Exercise 2 - Broken strings and printf-style logging

1) Remove the @ before the string and see what 
happens

2) Try NSLog(@"Hello, word! %i", i);
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Overview

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management
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Declaring
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Objects

.h

.m

.h Interface

Protocol

Implementation
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Name it RPSGame
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Exercise 3 - Creating an object

#import "RPSGame.h"

Back in the app delegate...

And then

!RPSGame *game = [[RPSGame alloc] init];
!NSLog(@"I have a game: %@", game);
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Objects - Typing

Every object is of type 

id
This is a pointer to the instance data of the object.

Of course, you can also declare a more specific type.

id game;

RPSGame * game;
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!RPSGame *game = [[RPSGame alloc] init];

!id game = [[RPSGame alloc] init];

Equivalent Statements
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Methods and Messages
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Messages

Method Calling v. Message Passing
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Messages

[object message]; 

With no arguments
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Messages

[object message]; 

[object message:value]; 

With no arguments

With 1 arguments
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Messages

[object message]; 

[object message:value]; 

With no arguments

With 1 arguments

With 2 arguments
[object message:value arg2:value]; 
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Messages

[aPerson init]; 

[aPerson initWithFirst:@”Ted”]; 

With no arguments

With 1 arguments

With 2 arguments
[aPerson initWithFirstAndLast:@”Ted” last:@”Benson”]; 
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You can send messages to classes

[Person alloc]; 

You can nest messages

Person* p = [[Person alloc] initWithName:@”Ted”]; 

Person* p = [Person alloc];
[p initWithName:@”Ted”]; 

equal to
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Defining Methods

- (id)initWithFirstAndLast:(NSString*)firstName 
                      last:(NSString*)lastName;

To Call
[aPerson initWithFirstAndLast:@”Ted” last:@”Benson”]; 

To Define
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@implementation RPSGame

-(NSString *)getWinnerName {
! return @"Ted";
}

@end

@interface RPSGame : NSObject {
}

-(NSString *)getWinnerName;

@end

Exercise 4 - A simple method, a simple message

 NSLog(@"The winner was: %@", [game getWinnerName]);

RPSGame.h RPSGame.m

App Delegate
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Instance Variables
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@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;
}

! int someInt;
! float someFloat;
! id untypedObject;
! // etc etc
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Initialization
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The init convention

•Objective-C has a lot of conventions that are only 
enforced by its programmers, not the compiler

•Unfortunately, you just have to learn these

[[RPSGame alloc] init]

+(id)alloc;

-(id)init;

Allocates memory and returns a pointer.

Initializes the newly allocated object.
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The init convention

-(id)init;
[[RPSGame alloc] init]

-(id)initWithAwesomeness:(BOOL)isAwesome;
[[RPSGame alloc] initWithAwesomeness:YES]

-(id)initWithPlayer1:(NSString *)p1 player2:(NSString *)p2;
[[RPSGame alloc] initWithPlayer1:@"Mario" player2:@"Luigi"]
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@implementation RPSGame

-(id)init {
! if (self = [super init]) {
! ! winnerName = nil;
! ! loserName = nil;
! }
! return self;
}

-(NSString *)getWinnerName {
! return winnerName;
}

@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;!
}

-(id)init;

Exercise 5 - Initialization

RPSGame.h RPSGame.m
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Exercise 6 - Mutators

-(NSString *)setWinnerName:(NSString *)name;

-(NSString *)setWinnerName:(NSString *)name {
! winnerName = [name copy];
}

! [game setWinnerName:@"Mario"];!
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Properties
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Properties

@interface TodoItem : NSObject {

  int dbkey;
	 BOOL complete;
	 int priority;
	 NSString * title;
	 NSDate * due;
}

@end

These all need 
getters and setters.
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Writing getters and setters is annoying.

Answer: Properties.

Think of them as compiler macros that generate 
the getter and setter for you.
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@property (nonatomic, copy) NSString *winnerName;

@synthesize winnerName, loserName;

Interface

Implementation
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Properties

@interface TodoItem : NSObject {
  int dbkey;
	 NSString * title;
}

@property (readonly) int dbkey;
@property (nonatomic, retain) NSString *title;

@end

#import "TodoItem.h"

@implementation TodoItem 

@synthesize title, dbkey;

@end
You are still responsible for 

cleaning up memory for this object!
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Property Attributes

@property (attributes) type name;

Writability
readwrite (default)
readonly

Setter Semantics
assign (default)
retain
copy

Atomicity
nonatomic
(no “atomic” attribute 
but this is the default)

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html

Source
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Calling Properties

game.winnerName = @"Something";

a = game.winnerName;

@property (nonatomic, copy) NSString *winnerName;

Will allow you to use “dot notation”

Or message passing

[game setWinnerName:@"Something"];

a = [game getWinnerName];
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@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;!
}

-(id)init;

@property (nonatomic, copy) NSString *winnerName;
@property (nonatomic, copy) NSString *loserName;

@end

@implementation RPSGame
@synthesize winnerName, loserName;

Exercise 7 - Properties

Change the AppDelegate to use “dot” notation.

Implementation

Interface
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Recap

Objects
Instance Variables

Methods
Messages
Properties
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Overview

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management

(if you’re coming from a Python/Java/C# 
background, this is where things can get tricky)
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Basic Idea

You need to help the Garbage Collector know 
when it is allowed to clean up an object. 

Objective-C accomplishes this with a technique 
similar to reference counting.
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Memory Management

Object Lifecycle

+ alloc - initOp - retain - release - release

Create array Initialize

Retain for use

main()

some_func() Release from use

Release from use
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Memory Management

Image Credit: 
blog.tice.de

1

Object Lifecycle

+ alloc - initOp

Ref Count +1

- retain - release - release

Create array Initialize

Retain for use

main()

some_func() Release from use

Release from use

+1 -1 -1
1 2 1 0
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Recall creating an object

Almost always follows the pattern

TodoItem *item = [[TodoItem alloc] init];

+ alloc

- init

Allocates the memory

Performs the initialization

..So leaves you with a retain count of 1
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Exercise 7 - Retain Count

! NSLog(@"The game's retain count is: %i", [game retainCount]);

In the App Delegate...

! [game release];
! NSLog(@"The game's retain count is: %i", [game retainCount]);

Now try:

Why does it crash?
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Most important commands that affect retain count

+alloc

-copy

-retain

-release

-autorelease

+1

+1

+1

-1

-1

Creating a new object

Duplicating an object

Reserving an object for your use

Releasing an object from your use

Delayed release
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Best way to think about it

Forget about the count!
It means nothing to you, because the runtime will do 

crazy things to it.

Instead, think of ownership

When you want an object, retain (or alloc) it.
When you are done with an object, release it.
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So in our app delegate

! RPSGame *game = [[RPSGame alloc] init];
! NSLog(@"I have a game: %@", game);

! [game setWinnerName:@"Mario"];!
! NSLog(@"The winner was: %@", [game getWinnerName]);

! [game release];

+1

-1

“I want an RPSGame”

“OK, I’m done with the RPS Game”

If you just follow that mindset, you’ll be memory 
leak free. But you must be vigilant!
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Autorelease
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Sometimes, you are done with an object
(so should release it!)

But you also want to return the object from a 
method.
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Exercise 8 - Why do we need autorelease

-(RPSGame *)createGame {
! RPSGame *game = [[RPSGame alloc] init];
! [game release];
! return game;
}

In the App Delegate...

! RPSGame *game = [self createGame];

Now create your game like this:

Why does it crash?
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autorelease is like a delayed version of release.

It gives other parts of the code time to claim 
ownership of an object before it is swept up by the 

GC process. 

Monday, January 11, 2010



Exercise 9 - Using autorelease

-(RPSGame *)createGame {
! RPSGame *game = [[RPSGame alloc] init];
! return [game autorelease];
}

In the App Delegate...

! RPSGame *game = [self createGame];

Now create your game like this:

But this still isn’t safe.... why?
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Exercise 9 - Using autorelease

! RPSGame *game = [[self createGame] retain];

! .....

! [game release];

In the App Delegate...

Claim ownership

Release ownership
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Deconstructors
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When is an object destroyed?

When it’s retain count reaches 0

Then the deconstructor                         is called - dealloc

Never call dealloc yourself -- this is always called automatically for you.
(Except when you’re calling [super dealloc] from within your dealloc implementation)
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Exercise 10 - Fix our deconstructor

-(void)dealloc {
! [super dealloc];
! [winnerName release];
! [loserName release];
}

In RPSGame.m
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Phew!
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Tomorrow we start the iPhone part 
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Great Objective C Resources

• Cocoa Dev Central
http://cocoadevcentral.com/d/learn_objectivec/

• The Objective-C 2.0 Programming Language
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
ObjC.pdf

• Stanford’s CS 193
http://www.stanford.edu/class/cs193p/cgi-bin/index.php

• BYU’s CocoaHeads Chapter
http://cocoaheads.byu.edu/resources
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