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Today

e The Toolchain

e Starting a Project

e iPhone Application Structure
e Objective-C Crash Course

eData Persistence with CoreData
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The 1IPhone Toolchain
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XCode
Objective-C, GDB

Interface Builder
Graphical Ul Development

Instruments
Profiling, Leak Finding

Simulator
Testing
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Starting a Project
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A O

New Project

Choose a template for your new project:

U iPhone OS

Application

‘] Mac OS X

Application
Framework & Library
Application Plug-in
System Plug-in
Other

Navigation-based OpenGL ES Tab Bar Utility Application
Application Application Application
View-based Window-based
Application Application

Options [2] Use Core Data for storage

% Window-based Application

This template provides a starting point for an application that uses Core Data. It provides an
application delegate that creates the Core Data stack and establishes the persistent store.

( Cancel ) (Choose...)

A4
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Your Project

Groups & Files

File Name C)

¥ & RPS §® CoreData.framework L4

» (] Classes §® CoreGraphics.framework ™~

» ] Other Sources §® Foundation.framework o

» [ Resources w| main.m 5K v

» ] Frameworks ﬁ MainWindow.xib ™~

» ] Products =] RPS-Info.plist 0
» @) Targets (A RPS.app 0
> 4 Executables /| RPS.xcdatamodel 0.477K v
v (4 Find Results E] RPS_Prefix.pch £
» [ ") Bookmarks .;l_RPSAnnDelenate h . 1
» 4 scMm S [ R - 1 | A

@ Project Symbols <> S [=Tc [#.[m|

» (i Implementation Files . No Editor
» (@@ Interface Builder Files
RPS launched @Succeeded
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IPhone Simulator

il Carrier = 12:16 PM
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The Debug View

Q~ String Matching
Groups & Files

: 0}
¥ & RPS §= CoreData.framework 4
» [ | Classes ﬁ CoreGraphics.framework ™
» ] Other Sources §® Foundation.framework o
» [ ] Resources w| main.m 5K L)
» [ ] Frameworks g MainWindow.xib L4
» [ ] Products =| RPS-Info.plist ]
» @) Targets (A RPS.app (]
> (4 Executables /| RPS.xcdatamodel 0.477K ™
v (4 Find Results | RPS_Prefix.pch 4
» M Bookmarks .;l_RPSAnnDelenate h . 1
» 4 scm S oo 1 s
=ProjectSymbols T — W [=Tc [#. | m|
» & ] Implementation Files - .
» (i Interface Builder Files No Editor
RPS launched @ Succeeded
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The Debug View

"9 RPS - Debugger Console

Simulator - 3.1.2 | De... v - ‘& Qev @ @

f

e

Y\

Overview Breakpoints Build and Run Tasks Restart Pause Clear Log
[Session started at 2009-12-29 12:15:40 -0500.]
RPS launched y/
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The iPhone Application Structure
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v 79 Untitled
¥ |Classes
1] UntitledAppDelegate.h
E] UntitledAppDelegate.m
Other Sources
E Untitled_Prefix.pch
E main.m
| Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E’ Untitled-Info.plist
¥ | Frameworks

5 Foundation framework Linked Frameworks
> §% CoreGraphics.framework Graphics, sound, bluetooth, etc

» §= CoreData.framework
| Products

B b — — — T L I I B L

' A Untitled.app
1) (©) Target

;o - &
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' v % Untitled

v

Vi

v

BB R’ e’ ™™™ wF 383 2

v

Classes

E] UntitledAppDelegate.h
E] UntitledAppDelegate.m
Other Sources

EJ Untitled_Prefix.pch

E] main.m

Resources

Z] Untitled.xcdatamodel
<] MainWindow.xib

__-] Untitled-Info.plist
Frameworks

» = UIKit.framework

» §= Foundation.framework

» = CoreGraphics.framework
» §= CoreData.framework

v

Products

{44 Untitled.app

' » @) Targets

| The

—xecutable
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"o Untitled
: ¥ |Classes
E] UntitledAppDelegate.h
i] UntitledAppDelegate.m
¥ | Other Sources
E] Untitled_Prefix.pch
E] main.m
¥ | Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E‘ Untitled-Info.plist
¥ | Frameworks
» &= UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» = CoreData.framework
¥ | Products
w4 Untitled.app

| > @Targer | Targets (different build settings)

B — — —-_— N Bl 0 &8 L

N - - &
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"o Untitled

Bl B 2 L.

e N T T e

¥ |Classes
E] UntitledAppDelegate.h
i] UntitledAppDelegate.m
¥ | Other Sources
E] Untitled_Prefix.pch
E] main.m
¥ | Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E‘ Untitled-Info.plist
¥ | Frameworks
» &= UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» = CoreData.framework
¥ | Products
w4 Untitled.app

» (L) Target

L

- - &

Resources
Images, sounds, data, IB files
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' v % Untitled

B — — — N Bl B 8 .

¥| |Classes
E] UntitledAppDelegate.h
;J UntitledAppDelegate.m
¥ | | Other Sources
1| Untitled_Prefix.pch
E] main.m
¥| |Resources
| Untitled.xcdatamodel
<] MainWindow.xib
__—] Untitled-Info.plist
¥| | Frameworks
» = UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» §= CoreData.framework
¥| | Products
‘24 Untitled.app

f » (L) Target

[ .

Lo - &

Bollerplate Code
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9 Untitled
Classes
i UntitledAppDelegate.h ) C
m UntitledAppDelegate.m YOur App S Ode
Other Sources
:}-I‘ Untitled_Prefix.pch
m main.m

o These folders, called groups are
Untitled.xcdatamodel ' ' "
4 MainWindow.xib just abstractions to help you
— organize your project -- they
8= UIKit.framework y . .
l':' Foundation.framework dOﬂ t eveq eXISt Iﬂ the
A% CoreGraphics.framework :
§% CoreData.framework fl|68y8terT :
Products
V Targ;t_sv tieg.app

Rearrange however you want.

Monday, January 11, 2010



Ul-Driven Programming

Nearly everything in your entire project is
essentially just a callback.

main.m

int main(int argc, char xargv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool releasel;
return retVal;

This Is the entire main routine!
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Ul-Driven Programming

S0 where is your hook to implement code?

UntitledAppDelegate.m

— (void)applicationDidFinishLaunching: (UIApplication x)application {
// Override point for customization after app launch

[window makeKeyAndVisible];

}

... the applicationDidFinishLaunching callback
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Ul-Driven Programming

UlApplication

N\

UlAppDelegate

- (void)applicationDidFinishLaunching: (UIApplication *)application
{

( nitialize your User Interface ]

[window makeKeyAndVisible];

After which point your app is almost entirely

Driven
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Objective-C
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1967 . History
Simula 67 -
Mmu
N [Py’[honj
1983 . 1993
C++ [ Ruby j
1071 o 1995
i =7 [ Java ]
C [ Perl |
\ 1983 . 2006 .
Objective C — --- —{ODbjective C 2.0
1980
Smal H:al k_8o Computer Languages ﬁ%l;ﬁ?neé

\_

J

http://www.levenez.com/lang/
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Objective-C
* Primitives & Strings

e Objects, Messages, and Properties

e Memory Management
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Primitives

The usual C Types
1nt, float,

It’s own boolean (ObjC forked before C99)
B OO I_ (Takes values NO=0 and YES=1 )

Some special types

id, Class, SEL, IMP

( nil is used instead of null. )
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Strings

Always use (NSString *) instead of C Strings
unless you know what you’re doing!!

Inline

@"This 1s an inline string";

Assigned

NSString *str = @"This 1s assigned to a variable”;

If you accidentally leave out the @, expect to crash!
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NSLog

While you’re getting to know Objective-C,
NSLog

IS your best friend.

(Or just use the debugger)
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Exercise 1 - See, it’s like C

— (void)applicationDidFinishLaunching: (UIApplication x)application {
int 1;
for (i=0; i<10; i++) {
NSLog(@"Hello, word!");
s

[window makeKeyAndVisiblel];

enNno ™4 Untitled - Debugger Console O
[Simulator - 3.... v] [-] & QV Q »
Overview Breakpoints  Build and Run  Tasks Restart

2010-91-10 15:99:09.043 Untitled[38382:207] Hello, word!
2010-91-10 15:99:09.044 Untitled[38382:207] Hello, word!
2010-91~-10 15:99:09.045 Untitled[38382:207] Mello, word!

[Session started at 2010-01-10 15:09:07 -0500.]
2010-01-10 15:99:09.026 Untitled([38382:207] Mello, word!
2010-01-10 15:99:09.034 Untitled([38382:207] Hello, word!
' 2010-91-10 15:99:09.041 Untitled([38382:207] Hello, word!
2010-91-10 15:99:09.042 Untitled(38382:207] Hello, word!

. 2010-91-10 15:09:09.043 Untitled(38382:207] Helle, word!
Build and Run

2010-01-19 15:99:09.046 Untitled([38382:207] HWello, word!
ril.-.l-li 15:99:09.057 Untitled(38382:207] Hello, word!

Untitled launched @ Succeeded
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EXxercise 2 - Broken strings and printf-style logging

1) Remove the @ before the string and see what
happens

2) Try NSLog(@"Hello, word! %i", 1i);
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Overview

¢ Primitives & Strings
e Objects, Messages, and Properties

e Memory Management
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Declaring
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Objects

h Interface

h Protocol

m Implementation
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W

Choose a template for your new file:

U iPhone OS L

= S = N

User Interface

Resource Objective-C class Objective-C test UlViewController
Code Signing case class subclass

Cocoa Class
Cand C++
User Interface
Resource Subclass of [ NSObject E
Interface Builder Kit
Other

|
m Objective-C class

An Objective-C class file, with an optional header which includes the <Foundation/
Foundation.h> header.

" Previous ) (= Next=)

Name it RPSGame
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Exercise 3 - Creating an object

Back In the app delegate...

#import "RPSGame.h"

And then

RPSGame xgame = [[RPSGame alloc] init];
NSLog(@"I have a game: %@'", game);

Monday, January 11, 2010



Objects - Typing

Every object is of type
1d

This is a pointer to the instance data of the object.

1d game;

Of course, you can also declare a more specific type.

RPSGame * game;
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—quivalent Statements

RPSGame xgame = [[RPSGame alloc] init];

id game = [[RPSGame alloc] init];
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Methods and Messages
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Messages

Method Calling v. Message Passing
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Messages

With no arguments
[object message];
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Messages

With no arguments
[object message];

With 1 arguments
lobject message:valugel;
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Messages

With no arguments
[object message];

With 1 arguments
[object message:value];

With 2 arguments
[object message:value arg2:value];
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Messages

With no arguments

aPerson init];

With 1 arguments
[aPerson initWithFirst:@"Ted"];

With 2 arguments
[aPerson initWithFirstAndLast:@" Ted” last:@"Benson’];
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You can send messages to classes

[Person alloc];

You can nest messages

Person”* p = [[Person alloc] initWithName:@” Ted”];
equal to

Person”® p = [Person alloc];
o InitWithName:@"Ted”];
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Defining Methods

To Calll
[aPerson initWithFirstAndLast:@"Ted” last:@"Benson’];

To Detfine

- (1d)inittWithFirstAndLast: (NSString*)firstName
last:(NSString*)lastName;

Monday, January 11, 2010



Exercise 4 - A simple method, a simple message

RPSGame.h RPSGame.m

@interface RPSGame : NSObject {  @implementation RPSGame

b | |
—(NSString *x)getWinnerName {

—(NSString *)getWinnerName; , return @"Ted";

@end gend

App Delegate

NSLog(@"The winner was: %@", [game getWinnerName]);
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Instance Variables
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@interface RPSGame : NSObject A
NSString *winnerName;
NSString *xloserName;

}

int somelnt;
float someFloat;
1d untypedObject;
// etc etc
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Intalization
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The Init convention

e Objective-C has a lot of conventions that are only
enforced by its programmers, not the compiler

e Unfortunately, you just have to learn these

[ [RPSGame alloc] init]

+(id)alloc; Allocates memory and returns a pointer.

-(id)init; |nitializes the newly allocated object.
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The Init convention

—(id)init;
[ [RPSGame alloc] init]

—(id)initWithAwesomeness: (BOOL)isAwesome:
[ [RPSGame alloc] initWithAwesomeness:YES]

—(id)initwWithPlayerl: (NSString *)pl player2: (NSString *)p2;
[ [RPSGame alloc] initWithPlayerl:@"Mario" player2:@"Luigi"]
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Exercise 5 - Initialization
RPSGame.h RPSGame.m

@interface RPSGame : NSObject { @implementation RPSGame
NSString *winnerName;

NSString xloserName; —(id)init {
I3 if (self = [super init]) A
o winnerName = nil;
—(id)init; loserName = nil;
¥
return self;
¥

—(NSString *)getWinnerName {
return winnerName;

}

Monday, January 11, 2010



Exercise 6 - Mutators

—(NSString *)setWinnerName: (NSString x)name;

—(NSString *x)setWinnerName: (NSString *)name {
winnerName = [name copyl;

}

[game setWinnerName:@"Mario"];
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Properties
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Properties

@interface TodoItem : NSObject {

int dbkey;

BOOL complete; These all need
int priority;

NSString * title; getters and setters.

NSDate * due;
3

@end

Monday, January 11, 2010



Writing getters and setters is annoying.
Answer: Properties.

Think of them as compiler macros that generate
the getter and setter for you.
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Interface

@property (nonatomic, copy) NSString s*xwinnerName;

Implementation

@synthesize winnerName, loserName;
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Properties

@interface TodoItem : NSObject {
int dbkey;
NSString * title;

3

@property (readonly) int dbkey;
@property (nonatomic, retain) NSString *title;

\

@end

#import "TodoItem.h"

@implementation TodoItem

|@synthesize title, dbkey; >

@end

You are still responsible for
cleaning up memory for this object!
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Property Attributes

@property (attributes) type name;

Writability Atomicity
readwrite (default) nonatomic
readonly (no “atomic” attribute

but this is the default)
Setter Semantics

assign (default)
retain

COpPY
Source

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter 5 section 3.html
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Calling Properties
@property (nonatomic, copy) NSString xwinnerName;

Will allow you to use “dot notation”

game.winnerName = @"Something";

a = game.winnerName,

Or message passing

[game setWinnerName:@"Something"];

a = [game getWinnerNamel;
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Exercise 7 - Properties

Interface

@interface RPSGame : NSObject {
NSString *winnerName;
NSString *xloserName;

}
—(id)init;

@property (nonatomic, copy) NSString *winnerName;
@property (nonatomic, copy) NSString *xloserName;

@end
Implementation

@implementation RPSGame
@synthesize winnerName, loserName,;

Change the AppDelegate to use “dot” notation.
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Recap

Objects
Instance Variables
Methods
Messages
Properties
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Overview

¢ Primitives & Strings
e Objects, Messages, and Properties

¢ Memory Management

(if you’re coming from a Python/Java/C#
background, this is where things can get tricky)
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8Basic ldea

You need to help the Garbage Collector know
when it is allowed to clean up an object.

Objective-C accomplishes this with a technique
similar to reference counting.
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Memory Management

Object Lifecycle

O mm—

Op + alloc - 1nit - retain| |- release| |- release

main() Create array Initialize Release from use

some_func() Retain for use Release from use
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Memory Management

Object Lifecycle

Ref Count +1 +1 *'1 *'1
Op + alloc - 1nit - retain| |- release| |- release |
I
Image Credit:

blog.tice.de
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Recall creating an object

Almost always follows the pattern

TodoItem *1tem = [[Todoltem alloc] 1nit];

+ dlloc Allocates the memory

- 1nit Performs the initialization

..S0 leaves you with a retain count of 1
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Exercise 7 - Retain Count

In the App Delegate...

NSLog(@"The game's retain count is: %i', [game retainCount]);

Now try:

[game release];
NSLog(@"The game's retain count is: %i'", [game retainCount]);

Why does it crash?
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Most important commands that affect retain count

t+alloc

-COpPY

-retain

-release

-autorelease

+1

+1

+1

Creating a new object

Duplicating an object

Reserving an object for your use

Releasing an object from your use

Delayed release
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BSest way to think about it

Forget about the count!

It means nothing to you, because the runtime will do
crazy things to it.

Instead, think of ownership

When you want an object, retain (or alloc) it.
When you are done with an object, release |it.
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SO In our app delegate

“l want an RPSGame”

+1 RPSGame xgame = [[RPSGamé_alloc]l)init];
NSLog(@"I have a game: %@'", game);

[game setWinnerName:@"Mario"];
NSLog(@"The winner was: %@", [game getWinnerName]);

-1 [game(release);

“OK, ’'m done with the RPS Game”

f you just follow that mindset, you’ll be memory
eak free. But you must be vigilant!
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Autorelease
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Sometimes, you are done with an object
(so should release it!)

Sut you also want to return the object from a
method.
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Exercise 8 - Why do we need autorelease

INn the App

—(RPSGame %x)createGame {

Delegate...

RPSGame xgame = [[RPSGame alloc] initl];

[game releasel];
return game,

}

Now create your game like this:

RPSGame xgame = [self createGamel;

Why does it crash?
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autorelease is like a delayed version of release.

't gives other parts of the code time to claim
ownership of an object before It Is swept up by the
GC process.
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Exercise 9 - Using autorelease

In the App Delegate...

—(RPSGame *)createGame {
RPSGame xgame = [[RPSGame alloc] init];
return [game autoreleasel];

¥

Now create your game like this:

RPSGame xgame = [self createGamel;

But this still isn’t safe.... why?

Monday, January 11, 2010



Exercise 9 - Using autorelease

In the App Delegate...

Claim ownership

RPSGame xgame = [[self createGame] retain];

[game releasel;

Release ownership
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Deconstructors
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When is an object destroyed?

\When it's retain count reaches 0O

Then the deconstructor |- dealloc| Is called

\_

Never call dealloc yourself -- this is always called automatically for you.
(Except when you’re calling [super dealloc] from within your dealloc implementation)

J
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Exercise 10 - Fix our deconstructor

In RPSGame.m

—(void)dealloc {
[super dealloc];
[winnerName release];
[LloserName release];

}
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Phew!
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Tomorrow we start the iPhone part
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Great Objective C Resources

e Cocoa Dev Central
http://cocoadevcentral.com/d/learn objectivec/

e The Objective-C 2.0 Programming Language
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
ODbjC.pdf

e Stanford’s CS 193
http://www.stanford.edu/class/cs193p/cqi-bin/index.php

e BYU’s CocoaHeads Chapter
http://cocoaheads.byu.edu/resources
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