Getting Started

Introduction to iPhone Development
IAP 2010 sk

iphonedev.csail.mit.edu edward benson / eob@csail.mit.edu

Monday, January 11, 2010

Today

e The Toolchain

e Starting a Project

e iPhone Application Structure
e Objective-C Crash Course

eData Persistence with CoreData

Monday, January 11, 2010

The 1IPhone Toolchain

Monday, January 11, 2010

XCode
Objective-C, GDB

Interface Builder
Graphical Ul Development

Instruments
Profiling, Leak Finding

Simulator
Testing

Monday, January 11, 2010

Starting a Project

Monday, January 11, 2010

A O

New Project

Choose a template for your new project:

U iPhone OS

Application

‘] Mac OS X

Application
Framework & Library
Application Plug-in
System Plug-in
Other

Navigation-based OpenGL ES Tab Bar Utility Application
Application Application Application
View-based Window-based
Application Application

Options [2] Use Core Data for storage

% Window-based Application

This template provides a starting point for an application that uses Core Data. It provides an
application delegate that creates the Core Data stack and establishes the persistent store.

(Cancel) (Choose...)

A4

Monday, January 11, 2010

Your Project

Groups & Files

File Name C)

¥ & RPS §® CoreData.framework L4

» (] Classes §® CoreGraphics.framework ™~

»] Other Sources §® Foundation.framework o

» [Resources w| main.m 5K v

»] Frameworks ﬁ MainWindow.xib ™~

»] Products =] RPS-Info.plist 0
» @) Targets (A RPS.app 0
> 4 Executables /| RPS.xcdatamodel 0.477K v
v (4 Find Results E] RPS_Prefix.pch £
» [") Bookmarks .;l_RPSAnnDelenate h . 1
» 4 scMm S [R - 1 | A

@ Project Symbols <> S [=Tc [#.[m|

» (i Implementation Files . No Editor
» (@@ Interface Builder Files
RPS launched @Succeeded

Monday, January 11, 2010

IPhone Simulator

il Carrier = 12:16 PM

Monday, January 11, 2010

The Debug View

Q~ String Matching
Groups & Files

: 0}
¥ & RPS §= CoreData.framework 4
» [| Classes ﬁ CoreGraphics.framework ™
»] Other Sources §® Foundation.framework o
» [] Resources w| main.m 5K L)
» [] Frameworks g MainWindow.xib L4
» [] Products =| RPS-Info.plist]
» @) Targets (A RPS.app (]
> (4 Executables /| RPS.xcdatamodel 0.477K ™
v (4 Find Results | RPS_Prefix.pch 4
» M Bookmarks .;l_RPSAnnDelenate h . 1
» 4 scm S oo 1 s
=ProjectSymbols T — W [=Tc [#. | m|
» &] Implementation Files - .
» (i Interface Builder Files No Editor
RPS launched @ Succeeded

Monday, January 11, 2010

The Debug View

"9 RPS - Debugger Console

Simulator - 3.1.2 | De... v - ‘& Qev @ @

f

e

Y\

Overview Breakpoints Build and Run Tasks Restart Pause Clear Log
[Session started at 2009-12-29 12:15:40 -0500.]
RPS launched y/

Monday, January 11, 2010

The iPhone Application Structure

Monday, January 11, 2010

v 79 Untitled
¥ |Classes
1] UntitledAppDelegate.h
E] UntitledAppDelegate.m
Other Sources
E Untitled_Prefix.pch
E main.m
| Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E’ Untitled-Info.plist
¥ | Frameworks

5 Foundation framework Linked Frameworks
> §% CoreGraphics.framework Graphics, sound, bluetooth, etc

» §= CoreData.framework
| Products

B b — — — T L I I B L

' A Untitled.app
1) (©) Target

;o - &

Monday, January 11, 2010

' v % Untitled

v

Vi

v

BB R’ e’ ™™™ wF 383 2

v

Classes

E] UntitledAppDelegate.h
E] UntitledAppDelegate.m
Other Sources

EJ Untitled_Prefix.pch

E] main.m

Resources

Z] Untitled.xcdatamodel
<] MainWindow.xib

__-] Untitled-Info.plist
Frameworks

» = UIKit.framework

» §= Foundation.framework

» = CoreGraphics.framework
» §= CoreData.framework

v

Products

{44 Untitled.app

' » @) Targets

| The

—xecutable

Monday, January 11, 2010

"o Untitled
: ¥ |Classes
E] UntitledAppDelegate.h
i] UntitledAppDelegate.m
¥ | Other Sources
E] Untitled_Prefix.pch
E] main.m
¥ | Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E‘ Untitled-Info.plist
¥ | Frameworks
» &= UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» = CoreData.framework
¥ | Products
w4 Untitled.app

| > @Targer | Targets (different build settings)

B — — —-_— N Bl 0 &8 L

N - - &

Monday, January 11, 2010

"o Untitled

Bl B 2 L.

e N T T e

¥ |Classes
E] UntitledAppDelegate.h
i] UntitledAppDelegate.m
¥ | Other Sources
E] Untitled_Prefix.pch
E] main.m
¥ | Resources
/| Untitled.xcdatamodel
D MainWindow.xib
E‘ Untitled-Info.plist
¥ | Frameworks
» &= UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» = CoreData.framework
¥ | Products
w4 Untitled.app

» (L) Target

L

- - &

Resources
Images, sounds, data, IB files

Monday, January 11, 2010

' v % Untitled

B — — — N Bl B 8 .

¥| |Classes
E] UntitledAppDelegate.h
;J UntitledAppDelegate.m
¥ | | Other Sources
1| Untitled_Prefix.pch
E] main.m
¥| |Resources
| Untitled.xcdatamodel
<] MainWindow.xib
__—] Untitled-Info.plist
¥| | Frameworks
» = UIKit.framework
» §= Foundation.framework
» = CoreGraphics.framework
» §= CoreData.framework
¥| | Products
‘24 Untitled.app

f » (L) Target

[.

Lo - &

Bollerplate Code

Monday, January 11, 2010

9 Untitled
Classes
i UntitledAppDelegate.h) C
m UntitledAppDelegate.m YOur App S Ode
Other Sources
:}-I‘ Untitled_Prefix.pch
m main.m

o These folders, called groups are
Untitled.xcdatamodel ' ' "
4 MainWindow.xib just abstractions to help you
— organize your project -- they
8= UIKit.framework y . .
l':' Foundation.framework dOﬂ t eveq eXISt Iﬂ the
A% CoreGraphics.framework :
§% CoreData.framework fl|68y8terT :
Products
V Targ;t_sv tieg.app

Rearrange however you want.

Monday, January 11, 2010

Ul-Driven Programming

Nearly everything in your entire project is
essentially just a callback.

main.m

int main(int argc, char xargv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool releasel;
return retVal;

This Is the entire main routine!

Monday, January 11, 2010

Ul-Driven Programming

S0 where is your hook to implement code?

UntitledAppDelegate.m

— (void)applicationDidFinishLaunching: (UIApplication x)application {
// Override point for customization after app launch

[window makeKeyAndVisible];

}

... the applicationDidFinishLaunching callback

Monday, January 11, 2010

Ul-Driven Programming

UlApplication

N\

UlAppDelegate

- (void)applicationDidFinishLaunching: (UIApplication *)application
{

(nitialize your User Interface]

[window makeKeyAndVisible];

After which point your app is almost entirely

Driven

Monday, January 11, 2010

Objective-C

Monday, January 11, 2010

1967 . History
Simula 67 -
Mmu
N [Py’[honj
1983 . 1993
C++ [Ruby j
1071 o 1995
i =7 [Java]
C [Perl |
\ 1983 . 2006 .
Objective C — --- —{ODbjective C 2.0
1980
Smal H:al k_8o Computer Languages ﬁ%l;ﬁ?neé

_

J

http://www.levenez.com/lang/

Monday, January 11, 2010

Objective-C
* Primitives & Strings

e Objects, Messages, and Properties

e Memory Management

Monday, January 11, 2010

Primitives

The usual C Types
1nt, float,

It’s own boolean (ObjC forked before C99)
B OO I_ (Takes values NO=0 and YES=1)

Some special types

id, Class, SEL, IMP

(nil is used instead of null.)

Monday, January 11, 2010

Strings

Always use (NSString *) instead of C Strings
unless you know what you’re doing!!

Inline

@"This 1s an inline string";

Assigned

NSString *str = @"This 1s assigned to a variable”;

If you accidentally leave out the @, expect to crash!

Monday, January 11, 2010

NSLog

While you’re getting to know Objective-C,
NSLog

IS your best friend.

(Or just use the debugger)

Monday, January 11, 2010

Exercise 1 - See, it’s like C

— (void)applicationDidFinishLaunching: (UIApplication x)application {
int 1;
for (i=0; i<10; i++) {
NSLog(@"Hello, word!");
s

[window makeKeyAndVisiblel];

enNno ™4 Untitled - Debugger Console O
[Simulator - 3.... v] [-] & QV Q »
Overview Breakpoints Build and Run Tasks Restart

2010-91-10 15:99:09.043 Untitled[38382:207] Hello, word!
2010-91-10 15:99:09.044 Untitled[38382:207] Hello, word!
2010-91~-10 15:99:09.045 Untitled[38382:207] Mello, word!

[Session started at 2010-01-10 15:09:07 -0500.]
2010-01-10 15:99:09.026 Untitled([38382:207] Mello, word!
2010-01-10 15:99:09.034 Untitled([38382:207] Hello, word!
' 2010-91-10 15:99:09.041 Untitled([38382:207] Hello, word!
2010-91-10 15:99:09.042 Untitled(38382:207] Hello, word!

. 2010-91-10 15:09:09.043 Untitled(38382:207] Helle, word!
Build and Run

2010-01-19 15:99:09.046 Untitled([38382:207] HWello, word!
ril.-.l-li 15:99:09.057 Untitled(38382:207] Hello, word!

Untitled launched @ Succeeded

Monday, January 11, 2010

EXxercise 2 - Broken strings and printf-style logging

1) Remove the @ before the string and see what
happens

2) Try NSLog(@"Hello, word! %i", 1i);

Monday, January 11, 2010

Overview

¢ Primitives & Strings
e Objects, Messages, and Properties

e Memory Management

Monday, January 11, 2010

Declaring

Monday, January 11, 2010

Objects

h Interface

h Protocol

m Implementation

Monday, January 11, 2010

W

Choose a template for your new file:

U iPhone OS L

= S = N

User Interface

Resource Objective-C class Objective-C test UlViewController
Code Signing case class subclass

Cocoa Class
Cand C++
User Interface
Resource Subclass of [NSObject E
Interface Builder Kit
Other

|
m Objective-C class

An Objective-C class file, with an optional header which includes the <Foundation/
Foundation.h> header.

" Previous) (= Next=)

Name it RPSGame

Monday, January 11, 2010

Exercise 3 - Creating an object

Back In the app delegate...

#import "RPSGame.h"

And then

RPSGame xgame = [[RPSGame alloc] init];
NSLog(@"I have a game: %@'", game);

Monday, January 11, 2010

Objects - Typing

Every object is of type
1d

This is a pointer to the instance data of the object.

1d game;

Of course, you can also declare a more specific type.

RPSGame * game;

Monday, January 11, 2010

—quivalent Statements

RPSGame xgame = [[RPSGame alloc] init];

id game = [[RPSGame alloc] init];

Monday, January 11, 2010

Methods and Messages

Monday, January 11, 2010

Messages

Method Calling v. Message Passing

Monday, January 11, 2010

Messages

With no arguments
[object message];

Monday, January 11, 2010

Messages

With no arguments
[object message];

With 1 arguments
lobject message:valugel;

Monday, January 11, 2010

Messages

With no arguments
[object message];

With 1 arguments
[object message:value];

With 2 arguments
[object message:value arg2:value];

Monday, January 11, 2010

Messages

With no arguments

aPerson init];

With 1 arguments
[aPerson initWithFirst:@"Ted"];

With 2 arguments
[aPerson initWithFirstAndLast:@" Ted” last:@"Benson’];

Monday, January 11, 2010

You can send messages to classes

[Person alloc];

You can nest messages

Person”* p = [[Person alloc] initWithName:@” Ted”];
equal to

Person”® p = [Person alloc];
o InitWithName:@"Ted”];

Monday, January 11, 2010

Defining Methods

To Calll
[aPerson initWithFirstAndLast:@"Ted” last:@"Benson’];

To Detfine

- (1d)inittWithFirstAndLast: (NSString*)firstName
last:(NSString*)lastName;

Monday, January 11, 2010

Exercise 4 - A simple method, a simple message

RPSGame.h RPSGame.m

@interface RPSGame : NSObject { @implementation RPSGame

b | |
—(NSString *x)getWinnerName {

—(NSString *)getWinnerName; , return @"Ted";

@end gend

App Delegate

NSLog(@"The winner was: %@", [game getWinnerName]);

Monday, January 11, 2010

Instance Variables

Monday, January 11, 2010

@interface RPSGame : NSObject A
NSString *winnerName;
NSString *xloserName;

}

int somelnt;
float someFloat;
1d untypedObject;
// etc etc

Monday, January 11, 2010

Intalization

Monday, January 11, 2010

The Init convention

e Objective-C has a lot of conventions that are only
enforced by its programmers, not the compiler

e Unfortunately, you just have to learn these

[[RPSGame alloc] init]

+(id)alloc; Allocates memory and returns a pointer.

-(id)init; |nitializes the newly allocated object.

Monday, January 11, 2010

The Init convention

—(id)init;
[[RPSGame alloc] init]

—(id)initWithAwesomeness: (BOOL)isAwesome:
[[RPSGame alloc] initWithAwesomeness:YES]

—(id)initwWithPlayerl: (NSString *)pl player2: (NSString *)p2;
[[RPSGame alloc] initWithPlayerl:@"Mario" player2:@"Luigi"]

Monday, January 11, 2010

Exercise 5 - Initialization
RPSGame.h RPSGame.m

@interface RPSGame : NSObject { @implementation RPSGame
NSString *winnerName;

NSString xloserName; —(id)init {
I3 if (self = [super init]) A
o winnerName = nil;
—(id)init; loserName = nil;
¥
return self;
¥

—(NSString *)getWinnerName {
return winnerName;

}

Monday, January 11, 2010

Exercise 6 - Mutators

—(NSString *)setWinnerName: (NSString x)name;

—(NSString *x)setWinnerName: (NSString *)name {
winnerName = [name copyl;

}

[game setWinnerName:@"Mario"];

Monday, January 11, 2010

Properties

Monday, January 11, 2010

Properties

@interface TodoItem : NSObject {

int dbkey;

BOOL complete; These all need
int priority;

NSString * title; getters and setters.

NSDate * due;
3

@end

Monday, January 11, 2010

Writing getters and setters is annoying.
Answer: Properties.

Think of them as compiler macros that generate
the getter and setter for you.

Monday, January 11, 2010

Interface

@property (nonatomic, copy) NSString s*xwinnerName;

Implementation

@synthesize winnerName, loserName;

Monday, January 11, 2010

Properties

@interface TodoItem : NSObject {
int dbkey;
NSString * title;

3

@property (readonly) int dbkey;
@property (nonatomic, retain) NSString *title;

\

@end

#import "TodoItem.h"

@implementation TodoItem

|@synthesize title, dbkey; >

@end

You are still responsible for
cleaning up memory for this object!

Monday, January 11, 2010

Property Attributes

@property (attributes) type name;

Writability Atomicity
readwrite (default) nonatomic
readonly (no “atomic” attribute

but this is the default)
Setter Semantics

assign (default)
retain

COpPY
Source

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter 5 section 3.html

Monday, January 11, 2010

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html

Calling Properties
@property (nonatomic, copy) NSString xwinnerName;

Will allow you to use “dot notation”

game.winnerName = @"Something";

a = game.winnerName,

Or message passing

[game setWinnerName:@"Something"];

a = [game getWinnerNamel;

Monday, January 11, 2010

Exercise 7 - Properties

Interface

@interface RPSGame : NSObject {
NSString *winnerName;
NSString *xloserName;

}
—(id)init;

@property (nonatomic, copy) NSString *winnerName;
@property (nonatomic, copy) NSString *xloserName;

@end
Implementation

@implementation RPSGame
@synthesize winnerName, loserName,;

Change the AppDelegate to use “dot” notation.

Monday, January 11, 2010

Recap

Objects
Instance Variables
Methods
Messages
Properties

Monday, January 11, 2010

Overview

¢ Primitives & Strings
e Objects, Messages, and Properties

¢ Memory Management

(if you’re coming from a Python/Java/C#
background, this is where things can get tricky)

Monday, January 11, 2010

8Basic ldea

You need to help the Garbage Collector know
when it is allowed to clean up an object.

Objective-C accomplishes this with a technique
similar to reference counting.

Monday, January 11, 2010

Memory Management

Object Lifecycle

O mm—

Op + alloc - 1nit - retain| |- release| |- release

main() Create array Initialize Release from use

some_func() Retain for use Release from use

Monday, January 11, 2010

Memory Management

Object Lifecycle

Ref Count +1 +1 *'1 *'1
Op + alloc - 1nit - retain| |- release| |- release |
I
Image Credit:

blog.tice.de

Monday, January 11, 2010

Recall creating an object

Almost always follows the pattern

TodoItem *1tem = [[Todoltem alloc] 1nit];

+ dlloc Allocates the memory

- 1nit Performs the initialization

..S0 leaves you with a retain count of 1

Monday, January 11, 2010

Exercise 7 - Retain Count

In the App Delegate...

NSLog(@"The game's retain count is: %i', [game retainCount]);

Now try:

[game release];
NSLog(@"The game's retain count is: %i'", [game retainCount]);

Why does it crash?

Monday, January 11, 2010

Most important commands that affect retain count

t+alloc

-COpPY

-retain

-release

-autorelease

+1

+1

+1

Creating a new object

Duplicating an object

Reserving an object for your use

Releasing an object from your use

Delayed release

Monday, January 11, 2010

BSest way to think about it

Forget about the count!

It means nothing to you, because the runtime will do
crazy things to it.

Instead, think of ownership

When you want an object, retain (or alloc) it.
When you are done with an object, release |it.

Monday, January 11, 2010

SO In our app delegate

“l want an RPSGame”

+1 RPSGame xgame = [[RPSGamé_alloc]l)init];
NSLog(@"I have a game: %@'", game);

[game setWinnerName:@"Mario"];
NSLog(@"The winner was: %@", [game getWinnerName]);

-1 [game(release);

“OK, ’'m done with the RPS Game”

f you just follow that mindset, you’ll be memory
eak free. But you must be vigilant!

Monday, January 11, 2010

Autorelease

Monday, January 11, 2010

Sometimes, you are done with an object
(so should release it!)

Sut you also want to return the object from a
method.

Monday, January 11, 2010

Exercise 8 - Why do we need autorelease

INn the App

—(RPSGame %x)createGame {

Delegate...

RPSGame xgame = [[RPSGame alloc] initl];

[game releasel];
return game,

}

Now create your game like this:

RPSGame xgame = [self createGamel;

Why does it crash?

Monday, January 11, 2010

autorelease is like a delayed version of release.

't gives other parts of the code time to claim
ownership of an object before It Is swept up by the
GC process.

Monday, January 11, 2010

Exercise 9 - Using autorelease

In the App Delegate...

—(RPSGame *)createGame {
RPSGame xgame = [[RPSGame alloc] init];
return [game autoreleasel];

¥

Now create your game like this:

RPSGame xgame = [self createGamel;

But this still isn’t safe.... why?

Monday, January 11, 2010

Exercise 9 - Using autorelease

In the App Delegate...

Claim ownership

RPSGame xgame = [[self createGame] retain];

[game releasel;

Release ownership

Monday, January 11, 2010

Deconstructors

Monday, January 11, 2010

When is an object destroyed?

\When it's retain count reaches 0O

Then the deconstructor |- dealloc| Is called

_

Never call dealloc yourself -- this is always called automatically for you.
(Except when you’re calling [super dealloc] from within your dealloc implementation)

J

Monday, Jan

uary 11, 2010

Exercise 10 - Fix our deconstructor

In RPSGame.m

—(void)dealloc {
[super dealloc];
[winnerName release];
[LloserName release];

}

Monday, January 11, 2010

Phew!

Monday, January 11, 2010

Tomorrow we start the iPhone part

Monday, January 11, 2010

Great Objective C Resources

e Cocoa Dev Central
http://cocoadevcentral.com/d/learn objectivec/

e The Objective-C 2.0 Programming Language
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
ODbjC.pdf

e Stanford’s CS 193
http://www.stanford.edu/class/cs193p/cqi-bin/index.php

e BYU’s CocoaHeads Chapter
http://cocoaheads.byu.edu/resources

Monday, January 11, 2010

http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://www.stanford.edu/class/cs193p/cgi-bin/index.php

