
Getting Started

Introduction to iPhone Development
IAP 2010 ❄

edward benson / eob@csail.mit.eduiphonedev.csail.mit.edu

Monday, January 11, 2010

Today

• The Toolchain

• Starting a Project

• iPhone Application Structure

• Objective-C Crash Course

•Data Persistence with CoreData

Monday, January 11, 2010

The iPhone Toolchain

Monday, January 11, 2010

XCode
Objective-C, GDB

Interface Builder
Graphical UI Development

Instruments
Profiling, Leak Finding

Simulator
Testing

Monday, January 11, 2010

Starting a Project

Monday, January 11, 2010

Monday, January 11, 2010

Your Project

Monday, January 11, 2010

iPhone Simulator

Monday, January 11, 2010

The Debug View

Monday, January 11, 2010

The Debug View

Monday, January 11, 2010

The iPhone Application Structure

Monday, January 11, 2010

Linked Frameworks
Graphics, sound, bluetooth, etc

Monday, January 11, 2010

The Executable

Monday, January 11, 2010

Targets (different build settings)

Monday, January 11, 2010

Resources
Images, sounds, data, IB files

Monday, January 11, 2010

Boilerplate Code

Monday, January 11, 2010

Your App’s Code

These folders, called groups are
just abstractions to help you
organize your project -- they
don’t even exist in the
filesystem.

Rearrange however you want.

Monday, January 11, 2010

UI-Driven Programming

Nearly everything in your entire project is
essentially just a callback.

int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

This is the entire main routine!

main.m

Monday, January 11, 2010

UI-Driven Programming

So where is your hook to implement code?

... the applicationDidFinishLaunching callback

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch

! [window makeKeyAndVisible];
}

UntitledAppDelegate.m

Monday, January 11, 2010

UI-Driven Programming

UIApplication

UIAppDelegate
- (void)applicationDidFinishLaunching:(UIApplication *)application
{

 [window makeKeyAndVisible];
}

UI Driven

Initialize your User Interface

After which point your app is almost entirely

Monday, January 11, 2010

Objective-C

Monday, January 11, 2010

C

Smalltalk-80

Objective C

Simula 67

C++

Objective C 2.0

2006

1983

1983

1980

1971

1967

Perl
1987

Ruby
1993

Java
1995

Python
1991

History

Source:
Computer Languages Timeline
http://www.levenez.com/lang/

Monday, January 11, 2010

Objective-C

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management

Monday, January 11, 2010

Primitives

The usual C Types

int, float, ...

It’s own boolean (ObjC forked before C99)

BOOL

Some special types

id, Class, SEL, IMP

Takes values NO=0 and YES=1

nil is used instead of null.

Monday, January 11, 2010

Strings

Always use (NSString *) instead of C Strings
unless you know what you’re doing!!

Inline

Assigned

If you accidentally leave out the @, expect to crash!

@"This is an inline string";

NSString *str = @"This is assigned to a variable";

Monday, January 11, 2010

NSLog

While you’re getting to know Objective-C,

NSLog

is your best friend.

(Or just use the debugger)

Monday, January 11, 2010

Exercise 1 - See, it’s like C

- (void)applicationDidFinishLaunching:(UIApplication *)application {

! int i;
! for (i=0; i<10; i++) {
! ! NSLog(@"Hello, word!");
! }
!
! [window makeKeyAndVisible];

}

Monday, January 11, 2010

Exercise 2 - Broken strings and printf-style logging

1) Remove the @ before the string and see what
happens

2) Try NSLog(@"Hello, word! %i", i);

Monday, January 11, 2010

Overview

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management

Monday, January 11, 2010

Declaring

Monday, January 11, 2010

Objects

.h

.m

.h Interface

Protocol

Implementation

Monday, January 11, 2010

Name it RPSGame
Monday, January 11, 2010

Exercise 3 - Creating an object

#import "RPSGame.h"

Back in the app delegate...

And then

!RPSGame *game = [[RPSGame alloc] init];
!NSLog(@"I have a game: %@", game);

Monday, January 11, 2010

Objects - Typing

Every object is of type

id
This is a pointer to the instance data of the object.

Of course, you can also declare a more specific type.

id game;

RPSGame * game;

Monday, January 11, 2010

!RPSGame *game = [[RPSGame alloc] init];

!id game = [[RPSGame alloc] init];

Equivalent Statements

Monday, January 11, 2010

Methods and Messages

Monday, January 11, 2010

Messages

Method Calling v. Message Passing

Monday, January 11, 2010

Messages

[object message];

With no arguments

Monday, January 11, 2010

Messages

[object message];

[object message:value];

With no arguments

With 1 arguments

Monday, January 11, 2010

Messages

[object message];

[object message:value];

With no arguments

With 1 arguments

With 2 arguments
[object message:value arg2:value];

Monday, January 11, 2010

Messages

[aPerson init];

[aPerson initWithFirst:@”Ted”];

With no arguments

With 1 arguments

With 2 arguments
[aPerson initWithFirstAndLast:@”Ted” last:@”Benson”];

Monday, January 11, 2010

You can send messages to classes

[Person alloc];

You can nest messages

Person* p = [[Person alloc] initWithName:@”Ted”];

Person* p = [Person alloc];
[p initWithName:@”Ted”];

equal to

Monday, January 11, 2010

Defining Methods

- (id)initWithFirstAndLast:(NSString*)firstName
 last:(NSString*)lastName;

To Call
[aPerson initWithFirstAndLast:@”Ted” last:@”Benson”];

To Define

Monday, January 11, 2010

@implementation RPSGame

-(NSString *)getWinnerName {
! return @"Ted";
}

@end

@interface RPSGame : NSObject {
}

-(NSString *)getWinnerName;

@end

Exercise 4 - A simple method, a simple message

 NSLog(@"The winner was: %@", [game getWinnerName]);

RPSGame.h RPSGame.m

App Delegate

Monday, January 11, 2010

Instance Variables

Monday, January 11, 2010

@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;
}

! int someInt;
! float someFloat;
! id untypedObject;
! // etc etc

Monday, January 11, 2010

Initialization

Monday, January 11, 2010

The init convention

•Objective-C has a lot of conventions that are only
enforced by its programmers, not the compiler

•Unfortunately, you just have to learn these

[[RPSGame alloc] init]

+(id)alloc;

-(id)init;

Allocates memory and returns a pointer.

Initializes the newly allocated object.

Monday, January 11, 2010

The init convention

-(id)init;
[[RPSGame alloc] init]

-(id)initWithAwesomeness:(BOOL)isAwesome;
[[RPSGame alloc] initWithAwesomeness:YES]

-(id)initWithPlayer1:(NSString *)p1 player2:(NSString *)p2;
[[RPSGame alloc] initWithPlayer1:@"Mario" player2:@"Luigi"]

Monday, January 11, 2010

@implementation RPSGame

-(id)init {
! if (self = [super init]) {
! ! winnerName = nil;
! ! loserName = nil;
! }
! return self;
}

-(NSString *)getWinnerName {
! return winnerName;
}

@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;!
}

-(id)init;

Exercise 5 - Initialization

RPSGame.h RPSGame.m

Monday, January 11, 2010

Exercise 6 - Mutators

-(NSString *)setWinnerName:(NSString *)name;

-(NSString *)setWinnerName:(NSString *)name {
! winnerName = [name copy];
}

! [game setWinnerName:@"Mario"];!

Monday, January 11, 2010

Properties

Monday, January 11, 2010

Properties

@interface TodoItem : NSObject {

 int dbkey;
	 BOOL complete;
	 int priority;
	 NSString * title;
	 NSDate * due;
}

@end

These all need
getters and setters.

Monday, January 11, 2010

Writing getters and setters is annoying.

Answer: Properties.

Think of them as compiler macros that generate
the getter and setter for you.

Monday, January 11, 2010

@property (nonatomic, copy) NSString *winnerName;

@synthesize winnerName, loserName;

Interface

Implementation

Monday, January 11, 2010

Properties

@interface TodoItem : NSObject {
 int dbkey;
	 NSString * title;
}

@property (readonly) int dbkey;
@property (nonatomic, retain) NSString *title;

@end

#import "TodoItem.h"

@implementation TodoItem

@synthesize title, dbkey;

@end
You are still responsible for

cleaning up memory for this object!

Monday, January 11, 2010

Property Attributes

@property (attributes) type name;

Writability
readwrite (default)
readonly

Setter Semantics
assign (default)
retain
copy

Atomicity
nonatomic
(no “atomic” attribute
but this is the default)

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html

Source

Monday, January 11, 2010

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/chapter_5_section_3.html

Calling Properties

game.winnerName = @"Something";

a = game.winnerName;

@property (nonatomic, copy) NSString *winnerName;

Will allow you to use “dot notation”

Or message passing

[game setWinnerName:@"Something"];

a = [game getWinnerName];

Monday, January 11, 2010

@interface RPSGame : NSObject {
! NSString *winnerName;
! NSString *loserName;!
}

-(id)init;

@property (nonatomic, copy) NSString *winnerName;
@property (nonatomic, copy) NSString *loserName;

@end

@implementation RPSGame
@synthesize winnerName, loserName;

Exercise 7 - Properties

Change the AppDelegate to use “dot” notation.

Implementation

Interface

Monday, January 11, 2010

Recap

Objects
Instance Variables

Methods
Messages
Properties

Monday, January 11, 2010

Overview

• Primitives & Strings

• Objects, Messages, and Properties

• Memory Management

(if you’re coming from a Python/Java/C#
background, this is where things can get tricky)

Monday, January 11, 2010

Basic Idea

You need to help the Garbage Collector know
when it is allowed to clean up an object.

Objective-C accomplishes this with a technique
similar to reference counting.

Monday, January 11, 2010

Memory Management

Object Lifecycle

+ alloc - initOp - retain - release - release

Create array Initialize

Retain for use

main()

some_func() Release from use

Release from use

Monday, January 11, 2010

Memory Management

Image Credit:
blog.tice.de

1

Object Lifecycle

+ alloc - initOp

Ref Count +1

- retain - release - release

Create array Initialize

Retain for use

main()

some_func() Release from use

Release from use

+1 -1 -1
1 2 1 0

Monday, January 11, 2010

Recall creating an object

Almost always follows the pattern

TodoItem *item = [[TodoItem alloc] init];

+ alloc

- init

Allocates the memory

Performs the initialization

..So leaves you with a retain count of 1

Monday, January 11, 2010

Exercise 7 - Retain Count

! NSLog(@"The game's retain count is: %i", [game retainCount]);

In the App Delegate...

! [game release];
! NSLog(@"The game's retain count is: %i", [game retainCount]);

Now try:

Why does it crash?

Monday, January 11, 2010

Most important commands that affect retain count

+alloc

-copy

-retain

-release

-autorelease

+1

+1

+1

-1

-1

Creating a new object

Duplicating an object

Reserving an object for your use

Releasing an object from your use

Delayed release

Monday, January 11, 2010

Best way to think about it

Forget about the count!
It means nothing to you, because the runtime will do

crazy things to it.

Instead, think of ownership

When you want an object, retain (or alloc) it.
When you are done with an object, release it.

Monday, January 11, 2010

So in our app delegate

! RPSGame *game = [[RPSGame alloc] init];
! NSLog(@"I have a game: %@", game);

! [game setWinnerName:@"Mario"];!
! NSLog(@"The winner was: %@", [game getWinnerName]);

! [game release];

+1

-1

“I want an RPSGame”

“OK, I’m done with the RPS Game”

If you just follow that mindset, you’ll be memory
leak free. But you must be vigilant!

Monday, January 11, 2010

Autorelease

Monday, January 11, 2010

Sometimes, you are done with an object
(so should release it!)

But you also want to return the object from a
method.

Monday, January 11, 2010

Exercise 8 - Why do we need autorelease

-(RPSGame *)createGame {
! RPSGame *game = [[RPSGame alloc] init];
! [game release];
! return game;
}

In the App Delegate...

! RPSGame *game = [self createGame];

Now create your game like this:

Why does it crash?

Monday, January 11, 2010

autorelease is like a delayed version of release.

It gives other parts of the code time to claim
ownership of an object before it is swept up by the

GC process.

Monday, January 11, 2010

Exercise 9 - Using autorelease

-(RPSGame *)createGame {
! RPSGame *game = [[RPSGame alloc] init];
! return [game autorelease];
}

In the App Delegate...

! RPSGame *game = [self createGame];

Now create your game like this:

But this still isn’t safe.... why?

Monday, January 11, 2010

Exercise 9 - Using autorelease

! RPSGame *game = [[self createGame] retain];

!

! [game release];

In the App Delegate...

Claim ownership

Release ownership

Monday, January 11, 2010

Deconstructors

Monday, January 11, 2010

When is an object destroyed?

When it’s retain count reaches 0

Then the deconstructor is called - dealloc

Never call dealloc yourself -- this is always called automatically for you.
(Except when you’re calling [super dealloc] from within your dealloc implementation)

Monday, January 11, 2010

Exercise 10 - Fix our deconstructor

-(void)dealloc {
! [super dealloc];
! [winnerName release];
! [loserName release];
}

In RPSGame.m

Monday, January 11, 2010

Phew!

Monday, January 11, 2010

Tomorrow we start the iPhone part

Monday, January 11, 2010

Great Objective C Resources

• Cocoa Dev Central
http://cocoadevcentral.com/d/learn_objectivec/

• The Objective-C 2.0 Programming Language
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
ObjC.pdf

• Stanford’s CS 193
http://www.stanford.edu/class/cs193p/cgi-bin/index.php

• BYU’s CocoaHeads Chapter
http://cocoaheads.byu.edu/resources

Monday, January 11, 2010

http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://www.stanford.edu/class/cs193p/cgi-bin/index.php

