Hacking a Google Interview - Handout 1

Course Description

Instructors: Bill Jacobs and Curtis Fonger
Time: January 12 - 15, 5:00 - 6:30 PM in 32-124
Website: http://courses.csail.mit.edu/iap/interview

Classic Question #1: Coin Puzzle

You have 8 coins which are all the same weight, except for one which is slightly
heavier than the others (you don't know which coin is heavier). You also have an
old-style balance, which allows you to weigh two piles of coins to see which one is
heavier (or if they are of equal weight). What is the fewest number of weighings
that you can make which will tell you which coin is the heavier one?

Good answer: Weigh 3 coins against 3 coins. If one of the groups is heavier, weigh
one of its coins against another one of its coins; this allows you to identify the heavy
coin. If the two groups balance, weigh the two leftover coins.

Not-so-good answer: Weigh 4 coins against 4 coins. Discard the lighter coins, and
weigh 2 coins against 2 coins. Discard the lighter coins and weigh the remaining
two coins.

Interview tips

When asked a question, open a dialog with the interviewer. Let them know what
you are thinking. You might, for example, suggest a slow or partial solution (let
them know that the solution is not ideal), mention some observations about the
problem, or say any ideas you have that might lead to a solution. Often, interviewers
will give hints if you appear to be stuck.

Often, you will be asked to write a program during an interview. For some reason,
interviewers usually have people write programs on a blackboard or on a sheet of
paper rather than on a computer. Itis good to get practice with writing code on the
board in order to be prepared for this.

Here is a list of "do's" and "don't's" when doing a programming interview:
Do's
* Ask for clarification on a problem if you didn't understand something or if
there is any ambiguity



* Let the interviewer know what you are thinking

* Suggest multiple approaches to the problem

* Bounce ideas off the interviewer (such as ideas for data structures or
algorithms)

* Ifyou get stuck, don't be afraid to let them know and politely ask for a hint

Don't's

* Never give up! This says nothing good about your problem solving skills.

* Don'tjustsit in silence while thinking. The interviewer has limited time to
find out as much as possible about you, and not talking with them tells them
nothing, except that you can sit there silently.

* Ifyou already know the answer, don't just blurt it out! They will suspect that
you already knew the answer and didn't tell them you've seen the question
before. Atleast pretend to be thinking though the problem before you give
the answer!

Big O Notation

Big O notation is a way that programmers use to determine how the running speed
of an algorithm is affected as the input size is increased. We say that an algorithm is
O(n) if increasing the input size results in a linear increase in running time. For
example, if we have an algorithm that takes an array of integers and increments
each integer by 1, that algorithm will take twice as long to run on an array of size
200 than on an array of size 100.

Now let's look at an algorithm of running time O(n”2). Consider the following Java
code:

boolean hasDuplicate (int[] array) {
for (int 1 = 0; i < array.length; i++) {
for (int j = 0; J < array.length; j++) {
if (arrayl[i] == array[j] && i !'= 7J) {

return true;

}
}

return false;

This algorithm takes in an array of integers and compares each integer to every

other integer, returning true if two integers are equal, otherwise returning false.
This array takes O(n”2) running time because each element has to be compared
with n elements (where n is the length of the array). Therefore, if we double the
input size, we quadruple the running time.



There is also a more formal definition of big O notation, but we prefer the intuitive
approach for the purposes of programming interviews.

Question: Searching through an array

Given a sorted array of integers, how can you find the location of a particular integer
x?

Good answer: Use binary search. Compare the number in the middle of the array
with x. Ifitis equal, we are done. If the number is greater, we know to look in the
second half of the array. Ifitis smaller, we know to look in the first half. We can
repeat the search on the appropriate half of the array by comparing the middle
element of that array with x, once again narrowing our search by a factor of 2. We
repeat this process until we find x. This algorithm takes O(log n) time.

Not-so-good answer: Go through each number in order and compare it to x. This
algorithm takes O(n) time.

Parallelism
Threads and processes:

A computer will often appear to be doing many things simultaneously, such as
checking for new e-mail messages, saving a Word document, and loading a website.
Each program is a separate "process". Each process has one or more "threads." If a
process has several threads, they appear to run simultaneously. For example, an e-
mail client may have one thread that checks for new e-mail messages and one
thread for the GUI so that it can show a button being pressed. In fact, only one
thread is being run at any given time. The processor switches between threads so
quickly that they appear to be running simultaneously.

Multiple threads in a single process have access to the same memory. By contrast,
multiple processes have separate regions of memory and can only communicate by
special mechanisms. The processor loads and saves a separate set of registers for
each thread.

Remember, each process has one or more threads, and the processor switches
between threads.

Mutexes and semaphores:

A mutex is like a lock. Mutexes are used in parallel programming to ensure that only
one thread can access a shared resource at a time. For example, say one thread is
modifying an array. When it has gotten halfway through the array, the processor
switches to another thread. If we were not using mutexes, the thread might try to
modify the array as well, which is probably not what we want.



To prevent this, we could use a mutex. Conceptually, a mutex is an integer that
starts at 1. Whenever a thread needs to alter the array, it "locks" the mutex. This
causes the thread to wait until the number is positive and then decreases it by one.
When the thread is done modifying the array, it "unlocks" the mutex, causing the
number to increase by 1. If we are sure to lock the mutex before modifying the
array and to unlock it when we are done, then we know that no two threads will
modify the array at the same time.

Semaphores are more general than mutexes. They differ only in that a semaphore's
integer may start at a number greater than 1. The number at which a semaphore
starts is the number of threads that may access the resource at once. Semaphores
support "wait" and "signal" operations, which are analogous to the "lock" and
"unlock" operations of mutexes.

Synchronized methods (in Java):

Another favorite question of interviewers is, "What is a synchronized method in
Java?" Each object in Java has its own mutex. Whenever a synchronized method is
called, the mutex is locked. When the method is finished, the mutex is unlocked.
This ensures that only one synchronized method is called at a time on a given object.

Deadlock:

Deadlock is a problem that sometimes arises in parallel programming. It is typified
by the following, which is supposedly a law that came before the Kansas legislature:

"When two trains approach each other at a crossing, both shall come to a full stop
and neither shall start up again until the other has gone."

Strange as this sounds, a similar situation can occur when using mutexes. Say we
have two threads running the following code:

Thread 1:

acquire(lock1);
acquire(lock2);
[do stuff]

release(lockl);
release(lock2);

Thread 2:

acquire(lock2);
acquire(lock1);
[do stuff]



release(lock2);
release(lockl);

Suppose that thread 1 is executed to just after the first statement. Then, the
processor switches to thread 2 and executes both statements. Then, the processor
switches back to thread 1 and executes the second statement. In this situation,
thread 1 will be waiting for thread 2 to release lock1, and thread 2 will be waiting
for thread 1 to release lock2. Both threads will be stuck indefinitely. This is called
deadlock.

Classic Question #2: Preventing Deadlock
How can we ensure that deadlock does not occur?

Answer: There are many possible answers to this problem, but the answer the
interviewer will be looking for is this: we can prevent deadlock if we assign an order
to our locks and require that locks always be acquired in order. For example, if a
thread needs to acquire locks 1, 5, and 2, it must acquire lock 1, followed by lock 2,
followed by lock 5. That way we prevent one thread trying to acquire lock 1 then
lock 2, and another thread trying to acquire lock 2 then lock 1, which could cause
deadlock. (Note that this approach is not used very often in practice.)

Some Other Topics
What is polymorphism?

Interviewers love to ask people this question point-blank, and there are several
possible answers. For a full discussion of all the types of polymorphism, we
recommend looking at its Wikipedia page. However, we believe that a good answer
to this question is that polymorphism is the ability of one method to have different
behavior depending on the type of object it is being called on or the type of object
being passed as a parameter. For example, if we defined our own "MylInteger" class
and wanted to define an "add" method for it (to add that integer with another
number), we would want the following code to work:

MyInteger intl = new MyInteger (5);
MyInteger int2 = new MyInteger(7);
MyFloat floatl = new MyFloat(3.14);
MyDouble doubl = new MyDouble(2.71);
print (intl.add (int2));
print (intl.add (floatl));
print (intl.add (doubl))

14

In this example, calling "add" will result in different behavior depending on the type
of the input.



What is a virtual function/method? (in C++)

Out of all the possible questions interviewers could ask about C++, this one seems to
be a strange favorite. A method's being "virtual" simply describes its behavior when
working with superclasses and subclasses. Assume class B is a subclass of class A.
Also assume both classes A and B have a method "bar()". Let's say we have the
following code in C++:

A *foo = new B();
foo->bar () ;

If the method "bar()" is declared to be virtual, then when we call foo->bar(), the
method found in class B will be run. This is how Java always handles methods and
it's usually what we want to happen. However, if the method bar() is not declared to
be virtual, then this code will run the method found in class A when we call
foo->bar().

Classic Question #3: Ato 1

Write a function to convert a string into an integer. (This function is called Ato I (or
atoi()) because we are converting an ASCII string into an integer.)

Good answer: Go through the string from beginning to end. If the first character is a
negative sign, remember this fact. Keep a running total, which starts at 0. Each time
you reach a new digit, multiply the total by 10 and add the new digit. When you
reach the end, return the current total, or, if there was a negative sign, the inverse of
the number.

Okay answer: Another approach is to go through the string from end to beginning,
again keeping a running total. Also, remember a number x representing which digit
you are currently on; x is initially 1. For each character, add the current digit times x
to the running total, and multiply x by 10. When you reach the beginning, return the
current total, or, if there was a negative sign, the inverse of the number.

Note: The interviewer is likely to ask you about the limitations of your approach.
You should mention that it only works if the string consists of an optional negative
sign followed by digits. Also, mention that if the number is too big, the result will be
incorrect due to overflow.



