6.811: Principles and Practice of Assistive Technology

Today: Assistive Technology after PPAT

Monday, 2 December 2013 William Li, wpli@mit.edu

Questions for Discussion

Why were commercial off-the-shelf assistive devices unsuitable for your client?

Will your prototype address the need for every person with the same disability? Why or why not?

MIT IDEAS Global Challenge

http://globalchallenge.mit.edu

- 1. A well-articulated need
- 2. A feasible approach
- 3. A team with the skills to solve the problem
- 4. A partner organization

MIT IDEAS Global Challenge: Past AT Winners

Leveraged Freedom Chair (2008)

6dot Braille Labeler (2009)

Smartphone Universal Access Hub (2011)

10

Design/Research Competitions

From ACM ASSETS 2011/2012

ABSTRACT

This study evalua to the standard wi participants with cere Six of them showed With suitable custo software, the Wii re increases in advantation

StopFinder: Improving the Experience of Blind Public Transit Riders with Crowdsourcing

Sanjana Prasain Computer Science and Engineering, Univer Seattle, WA, USA +1 (206) 604 2030 pras5181@uw.edu arsity of Washington

ABSTRAC

ACM Classification Keywords H.5 Information interfaces and presenta Interfaces (D.2.2, H.1.2, I.3.6), User-centere tion (I.7), H.5.2 User

General Terms Design, Reliability, Hur

Keywords Blind, Crowd cing, Smart phone, Accessibility, Public transit,

1. INTRODUCTION

DUCTION o work, schools, hospitals etc to lead their daily lives, an accommodate this need by driving their personal wer, people with severe visual impairments cannot hev have to relv on the sublic transit system to

2. MOTIVATION	
Before working on this research project, we developed GoBi	aille, ⁰¹
two related Braille-based applications that provide infor	mation
about buses and bus stops where we implemented a pr	initive
system for crowdsourcing landmarks. GoBraille consisted of	Braille
note-taker that used the capabilities of an android phone to p	provide
the information about bus stops. The system was able to	display
information in Braille display as well as speech depending	on the
preference of the user. In that work, we conducted interview	vs with
blind people to understand how they use the public transit s	system.
and how to make the information about their transit avail	able to
them to enhance their safety and independence. Through	th user
studies, we realized the importance of reliable, accurate and	oncise
information about various landmarks to much to the proper b	us steo
in addition to getting information about exact bus stops lo	cation.
Also, there was concern related to the cost of Braille note-take	er.
Therefore based on these interviews and studies. I started	on this
more the initiate a new abifum for moriding of	con the second
research project to mome a new panotin for providing e	Sector 1
information using just a mobile device. This would enable th	e tena
users to get this information on their smart phone and don't	require
them to possess Braille note-taker. I have designed two d	ifferent
systems: one for people with vision and another for blind	people.
For acquiring the goal of accurate information through large	or scale
and coverage, I am using iPhone, which is the most widel	ly used
smart-phone by blind public transit riders using text-to-speech	4

Wii Remote as a Web Navigation Device For People with Cerebral Palsy

Nithin Santhanam Swanson School of Engineering rsity of Pittsburgh, Pittsburgh, PA 15261 nis57@pitt.edu

2. THE USER STUDY

THE USERSTOPT
Participants
There were 12 participants (5 male, 7 fe wheelchair users. All had cerebral palsy, a abilities. Most had some level of visual participant had some computer and web typically used the mouse to access the web.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and General Terms: Human Factors Keywords Web accessibilit

Web accessibility, customization, user study. 1. INTRODUCTION In spite of the abundance of tools and techniques available to improve web accessibility for people with visual and motor imaximents. customizable and inextensive ontions remain

Spitally used the mouse to access the web. 2.2. Modification of the WH Ref to its normal tange, the Wir encode is aimply findered light and sends information such as clicks, etc. to the Wii gaming system. It is will remote can be programmed for nor Blaecoded, minerface [3], thus allowing contentiable program to exploit the various rich motion sensitive gentures of the Wii dev contentiable program, any kychoand fance to any Wii remote control. Based on a pro-verdimention Leading the tanget the tanget of proved the sensitive sensitive sensitive sensitive proved the sensitive sensitive sensitive sensitive provide the sensitive sensitive sensitive sensitive sensitive provide the sensitive sensitive sensitive sensitive sensitive provide the sensitive sensitive sensitive sensitive provide the sensitive sensitive sensitive sensitive provide the sensitive sensitiv

Challenges of AT Product Development

- Small market sizes (compared to mainstream consumer products)
- Significant technical challenges
- Evolving user needs
- · Limited knowledge/access to marketplace
- Cost of assistive technology

Legislation and Policy

- 1990 Americans with Disabilities Act (ADA)
- 1983 Orphan Drug Act
 - Subsidies/patent incentives for drugs for diseases that affect fewer than 200,000 Americans

