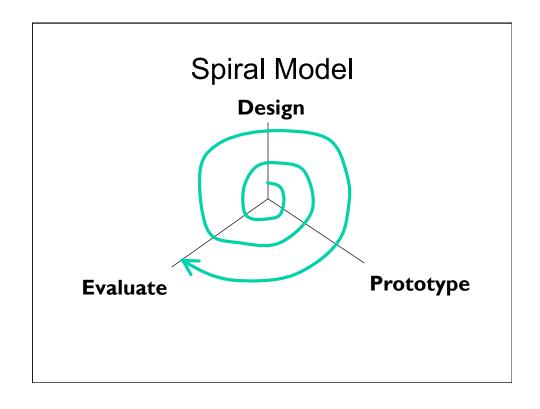

6.S196 / PPAT: Principles and Practice of Assistive Technology


Today: User-Centered Design [C&H Ch. 4]

Friday, 16 Sept. 2011 Prof. Rob Miller

Today's Topics

- Design process
 - Iterative design
 - User-centered design
- Information gathering
 - User analysis
 - Task analysis
 - Contextual inquiry
 - Defining success end-to-end

Iterative Design of User Interfaces

- Early iterations use cheap prototypes
 - Parallel design is feasible: build & test multiple prototypes to explore design alternatives
- Later iterations use richer implementations, after UI risk has been mitigated
- More iterations generally means better UI
- Only mature iterations are seen by the world

Early & Late Prototypes Page Sature Per Sate: Per Sa

User-Centered Design

- Spiral design
 - repeated iterations of cheap prototypes
- Early focus on users and tasks
 - user analysis: who the users are
 - task analysis: what they need to do
 - involving users as evaluators, consultants, and sometimes designers
- Constant evaluation
 - users are involved in every iteration
 - every prototype is evaluated somehow

User Analysis: Know Your Client

- · Identify characteristics of target user
 - Age, gender, culture, language
 - Education (literacy? numeracy?)
 - Functional limitations
 - Technology experience (computers? typing?)
 - Motivation, attitude
 - Relevant environment and other social context
 - Relevant relationships and communication patterns

Skills Evaluation: Sensory

- Visual function
 - acuity, field, tracking, scanning
- Visual perception
 - depth, spatial relationships
- Tactile function
- Auditory function

Skills Evaluation: Motor

- · Range of motion
- Muscle strength
- · Muscle tone
- Balance
- Tremor/involuntary movement
- Functional grasp patterns

Skills Evaluation: Cognitive

- Memory
- · Problem-solving
- Sequencing
- Language

Skills Assessment

- · Bring a questionnaire
 - Sample assessment forms in C&H Ch. 4, pp. 128-142
- · Don't have to ask every question
 - Focus on assessments likely to be relevant to target user and target activity
 - Which sensory evaluations are relevant to a blind client?
 - vision? audio? tactile?

Task Analysis

- Identify the individual tasks the assistive technology might address
- Each task is a goal (what)
- Start with a high-level activity
- Then decompose it hierarchically into subtasks (how)

Essential Parts of Task Analysis

- · What needs to be done?
 - Goal
- What must be done first to make it possible?
 - Preconditions
 - · Tasks on which this task depends
 - · Information that must be known to the user
- What steps are involved in doing the task?
 - Subtasks
 - may be further decomposed, recursively

Other Questions to Ask About a Task

- Where is the task performed?
- What is the environment like?
 - noisy, dirty, dangerous, crowded
- How often is the task performed?
- What are its time or resource constraints?
- What can go wrong?
 - exceptions, errors, emergencies
- Who else is involved in the task?
- What assistive technology (if any) is the client currently using for the task?

Common Errors in Task Analysis

- Thinking from the system's point of view, rather than the user's
 - "Notify user about appointment"
 - vs. "Get a reminder about appointment"
- Fixating too early on a UI design vision
 - "A bell will ring to remind the user about an appointment..."
- Bogging down in what the client does now (concrete tasks), rather than why they do it (essential tasks)
 - "Save file to disk"
 - vs. "Make sure my work is kept"
- Duplicating a flawed existing method in your design
- Failing to capture good aspects of existing method

Hints for Better Task Analysis

- Questions to ask
 - Why do you do this? (goal)
 - How do you do it? (subtasks)
- Look for weaknesses in current situation
 - Goal failures
 - Wasted time
 - User irritation or fatigue

Contextual Inquiry

- Observe client doing the tasks in their real environment
 - Be concrete
- Establish a master-apprentice relationship
 - Client shows how and talks about it
 - You watch and ask questions
- Challenge your own assumptions
 - Share your assumptions openly with client
 - Probe surprises

Participatory Design

· Include user directly in the design team

Success Metrics

- Choose evaluation metric(s) with client
 - efficiency: time on task
 - success rate
 - errors: frequency or severity
 - fatigue: how many times task can be done
- Set quantitative and qualitative targets
 - "get dressed in 2 minutes"
 - "make coffee without assistance"
 - "control my bed while hand is holding something else"
- Use the metrics and targets in subsequent process
 - evaluate on system models
 - predict outcome
 - measure on prototypes

Challenges for UCD for Assistive Technology

- Cognitive impairments
 - May need to include others in informationgathering
- · Hidden impairments
 - May be hard to find people

Summary

- User-centered design manages project risk and stays focused on user needs
- User analysis assesses the client
- Task analysis discovers their tasks
- Success metric keeps you on track