Problem 1. (Reducing the directed max flow to the undirected max flow.) Consider a directed graph $G = (V, E)$ (with unit capacities), a source vertex s and a sink vertex t. Now, let $\hat{G} = (V, \hat{E})$ be an undirected graph over the same vertex V set as G. The edges set \hat{E} of \hat{G} is defined as follows: for each arc $e = (u, v) \in E$ in G, with u being the tail and v being the head of e, the graph \hat{G} has edges $(s, v), (u, v)$, and (u, t) added to \hat{E}.

(a) Let F^* be the value of the maximum s-t flow in G. Argue that the value \hat{F}^* of the maximum s-t flow in \hat{G} is exactly $2F^* + |E|$.

Hint: Use the max-flow min-cut theorem.

(b) (Extra credit) Design a nearly-linear time procedure that given a maximum s-t flow \hat{f}^* in \hat{G} returns a maximum s-t flow in G.

Hint: You might need to use here some advanced data structure result.

Note: This construction extends to arbitrary capacities in a straightforward manner.

Problem 2. (Implementing the conjugate gradient method.) Recall the linear system solving via conjugate gradient method that we discussed in class.

Algorithm 1 Conjugate gradient method.

Compute

$$x_T := \underset{x \in K_T}{\text{argmin}} \ g(x), \tag{1}$$

where $K_T := \text{span}(b, Ab, \ldots, A^{T-1}b)$ is the Krylov’s subspace of order T and

$$g(x) := \frac{1}{2} \left(\|e(x)\|_A^2 - \|x^*\|_A^2 \right) = \frac{1}{2} \|x\|_A^2 - b^T x.$$

return x_T.

Let $v_1, \ldots, v_T \in \mathbb{R}^n$ be an A-orthogonal basis for K_T. That is, we have that, for each $x \in K_T$, $x = \sum_{s=1}^{T} \alpha_s v_s$, for some $\alpha_1, \ldots, \alpha_T \in \mathbb{R}$; and $v_i \cdot_A v_j = 0$, if $i \neq j$, where $x \cdot_A y := x^T A y$

is the inner A-product.

(a) Show that the optimization problem (1) is equivalent to the following formulation

$$\underset{\alpha_1, \ldots, \alpha_T \in \mathbb{R}}{\text{argmin}} \ \sum_{s=1}^{T} \left(\frac{\alpha_s^2}{2} \|v_s\|_A^2 - \alpha_s b^T v_s \right). \tag{2}$$

(b) Argue that, given the A-orthogonal basis v_1, \ldots, v_T, we can solve problem (2) using only T matrix-vector multiplications of A.

1
(c) Prove that one can compute the A-orthogonal basis v_1, \ldots, v_T using only $O(T)$ matrix-vector and vector-vector multiplications.

Hint: Proceed in phases. In phase s, given an A-orthogonal basis v_1, \ldots, v_{s-1} for K_{s-1}, extend it to an A-orthogonal basis $v_1, \ldots, v_{s-1}, v_s$ for K_s by applying the Gram-Schmidt orthogonalization procedure to the vector $v'_s := Av_{s-1}$. (Why $K_s = \text{span}(v_1, \ldots, v_{s-1}, v'_s)$?) What can you say about $v_i \cdot A v'_s$, for each $i < s-2$?

Problem 3. (Understanding the lower end of the spectrum of a Laplacian matrix.) Let us fix an (unweighted) graph $G = (V, E, w)$ and let L be its Laplacian matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

(a) Prove that all the eigenvalues of the Laplacian L are non-negative, i.e., that $\lambda_1 \geq 0$.

(b) Show that $\lambda_1 = 0$ and the all-ones vector $\vec{1} := (1, \ldots, 1)$ is the corresponding eigenvector.

(c) Prove that, for any $k \geq 1$, $\lambda_k = 0$ iff G has at least k connected components.

Note: This means, in particular, that if G is connected then $\lambda_2 > 0$.

Hint: The fact that we mentioned in class that, for any vector $x \in \mathbb{R}^n$, $x^T L x = \sum_{e = (u,v) \in E} (x_u - x_v)^2$ might be useful here.

Problem 4. (Bipartiteness and the value of λ_n.) Let $G = (V, E)$ be a bipartite graph and let $\lambda_1 \leq \ldots \leq \lambda_n$ be the eigenvalues of its Laplacian. (A graph is bipartite iff one can partition its vertices into two sets P and Q such that each edge has one endpoint in P and the other one in Q.)

(a) Show that whenever G is d-regular (but not necessarily bipartite) we have that $\lambda_n \leq 2d$. (A graph is d-regular iff each vertex of G has its degree equal to d.)

Note: One can show in a similar way that even when G is not d-regular then $\lambda_n \leq 2d_{\text{max}}$, where d_{max} is a maximum degree.

(b) Prove that for a d-regular graph G, if G is bipartite then $\lambda_n = 2d$.

(c) (Extra credit) Let G be d-regular and connected. Argue that if we have that $\lambda_n = 2d$ then G is bipartite. Does this implication always hold if G is not connected?