
Risk Management and
the Minimum Viable Product

“...project risk is a good thing, a likely indicator of value.
Projects that have real value but little or no risk were all
done ages ago.”

Peopleware: Productive Projects and Teams

“Part of the challenge of programming (and for some
people, the reason why programming is fun in the first
place) is looking at the building blocks provided to you and
deciding how to assemble them to build something new.
After all, if everything you wanted a program to do already
existed ready-made, it wouldn’t be called programming any
more. It would be called shopping.”

Raymond Chen

https://blogs.msdn.microsoft.com/oldnewthing/20090804-00/?p=17233/

“...the real reason for risk management: It’s not to make the
risks go away, but to enable sensible mitigation should they
occur. And mitigation may well have to be planned and
provisioned well ahead of time.”

Peopleware: Productive Projects and Teams

What risks are you worried
about?

What risks are you not worried
about?

Categories of risk
Technical risk: bug in dependency, bug in other parts of the system, production
environment differs from development environment, NP-hard subproblem

Entrepreneurial risk: you built the wrong thing, you built the right thing but the
requirements changed, customers don’t really care, complementary assets not
available

Social risk: your mentor is unresponsive, your users can’t/won’t make time to meet
with you

Categories of risk
Technical risk: bug in dependency, bug in other parts of the system, production
environment differs from development environment, NP-hard subproblem

Entrepreneurial risk: you built the wrong thing, you built the right thing but the
requirements changed, customers don’t really care, complementary assets not
available

Social risk: your mentor is unresponsive, your users can’t/won’t make time to meet
with you

Personal risk: you get sick, you’re too busy with other classes, you don’t know the
language/library/environment as well as you thought

Software Development
Strategies

Software development strategies
Software development strategies are strategies for managing risk.

Also called methodologies, processes, paradigms, …

Primarily describe interactions between humans (and associated artifacts), not
projects or technologies.

Waterfall Agile

Both sides are strawmen. Every real
project is somewhere in between.

The waterfall model
Requirements
collection

Design
specification

Implementation

Testing

Delivery and
maintenance

The waterfall model: pros and cons
Manage risk by getting certainty early.

Producing a design specification helps detect
technical challenges earlier, when they’re
cheaper to mitigate or avoid.

Producing a design specification before
implementation begins helps document and
retain overall knowledge of the system even
after people leave the team.

Dedicated testing phase stabilizes the product
before release. Even if a bug isn’t fixed, it’s at
least not a customer surprise.

Customers may not know what they want (or
don’t want) until they see it. If requirements
change, hard to correct course.

Product becomes available all at once at the
very end of the process. In the meantime, the
partial product is not useful.

The Agile Manifesto
“We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over Processes and tools

Working software over Comprehensive documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left
more.”

From Wikipedia
Popular agile software development frameworks include (but are not limited to):

● Adaptive software development (ASD)
● Agile modeling
● Agile Unified Process (AUP)
● Crystal Clear methods
● Disciplined agile delivery
● Dynamic systems development method (DSDM)
● Extreme programming (XP)
● Feature-driven development (FDD)
● Lean software development
● Kanban
● Rapid application development (RAD)
● Scrum
● Scrumban

Backlog: a list of user stories, features, bugs, issues, or other tasks that might
eventually be worked on. Size often estimated in arbitrary points.

Timebox (or sprint): a fixed length of time in which some amount of work will be
done, resulting in a usable/shippable product. 2-4 weeks is typical.

Project owner: orders the backlog according to risk or return. Ideally the customer.

Stand-up meeting
● What did I do yesterday?
● What will I do today?
● What’s blocking me?

Meant for general awareness and initiating follow-up meetings between team
members. Not a problem-solving meeting.

Brief enough to be conducted standing up.

Information radiators: Kanban board

Release trains
Linux kernel: release trains branch every ten weeks. Release candidates are
made available for testing. Only bug fixes are added to the train after branching.

Firefox: Aurora (two releases ahead), Beta (one release ahead) and main release
channels. Uplift requests to merge to Aurora and Beta require approval based on
risk and user impact if declined. Chemspill releases for showstopper bugs or
security issues discovered after release.

Windows: internal betas, community technology previews, consumer preview,
release to manufacturing, general availability, service packs.

Windows 10: fast ring, slow ring, release preview

Minimum Viable
Product

From Disciplined Entrepreneurship p237
There are three core elements necessary to have a Minimum Viable Product. All
three must be present for this step to be successfully completed.

● The customer gets value out of use of the product.
● The customer pays the time and effort necessary to gain use of the product.
● The product is sufficient to start the customer feedback loop, where the

customer can help you iterate toward an increasingly better product.

Your odds of success are higher if you limit the number of variables in your initial
product, getting something that works into the customer’s hands quickly, even if it
does not have all the functionality you would like to provide.

