
6.S194 Open Source
Entrepreneurship

Lecture 1

Staff

Saman Amarasinghe
Professor EECS/CSAIL
saman@mit.edu
32-G744

Jeff Bosboom
PhD student CSAIL
jbosboom@csail.mit.edu

Nick Meyer
Entrepreneur in Residence, Trust Center
nmeyer@mit.edu

mailto:saman@mit.edu
mailto:saman@mit.edu
mailto:jbosboom@csail.mit.edu
mailto:jbosboom@csail.mit.edu
mailto:nmeyer@mit.edu
mailto:nmeyer@mit.edu

Projects

Zulip

Group chat and private messaging built around message
streams (threads)

Server built on Python, Django

● Apps
○ React Native-based mobile app
○ Electron-based desktop app
○ Snipe terminal IM client

● Interactive chat bot framework
● Separating Django libraries
● Federating Zulip with Jabber or IRC
● Dockerizing Zulip, deployment path
● Voice and video chat
● Real-time collaborative editing
● On-boarding path for open source projects

Attribute-based encryption library

Attribute-based encryption allows users to selectively
decrypt certain ciphertexts based on access control
permissions.

Useful in databases where each user has one key that can
decrypt different (overlapping) slices of the database.

Existing libraries are outdated due to advances in
cryptography and in hardware.

Project is to implement a modern attribute-based encryption
library for the research community and benchmark it against
previous implementations.

Re-encryption library

Encrypted data stored on a server must be re-encrypted if
the key is compromised or to revoke access from another
user.

Downloading the data, decrypting, and re-encrypting it is
expensive. Decrypting the data on the server exposes it.

Proxy re-encryption schemes allow the server to re-encrypt
the data without first decrypting it.

Some basic libraries have been implemented, but they have
not been open sourced and have not been thoroughly tested.
The goal of this project is to open source this library so
that others can use it. There is already interest from
industry in having such an open source library.

Function secret sharing library

Function Secret Sharing (FSS) is a recent cryptographic
primitive that allows a client to divide a function f into
function shares f_1, f_2,...,f_k so that multiple parties
can help evaluate f without learning the input.

This is a powerful technique that allows users to do private
querying and anonymous community with very little bandwidth
overhead.

Currently, there are no good open source libraries to do
this. The goal of the project would be to create a library
with a clean API so that other projects can build up on
this. There is a lot of interest around this in the research
community, and it would be heavily used.

Aurum

A system for data discovery at scale.

Java-based profiler summarizes terabytes of data into
profiles that contain signatures that represent that data

Python graph builder finds relations between profiler
signatures using minhash signatures and locality-sensitive
hashing

Discovery layer named SRQL allows users to declare discovery
queries

In use by companies, including a big pharma company and a
data integration company, and is to be deployed in New York
City’s analytics infrastructure.

Gavel
Project expo/hackathon judging
system used at HackMIT

Based on pairwise comparisons

Python 3, Flask, NumPy, SciPy

uLink - smart microgrids for affordable electricity
access
uLink is a system for building
smart microgrids for
electrification of
rural/undeveloped areas.

uLink manages disparate power
sources (solar, diesel generators,
hydro turbines) and sinks.

uLink devices connect via a wired
MODBUS network and to the Internet
via GSM.

uLink learns demand and generation
profiles using unsupervised
learning, then uses these profiles
to determine a pricing strategy
that matches supply and demand.

MOOCdb

The MOOCdb project aims to brings together education
researchers, computer science researchers, machine learning
researchers, technologists, database and big data experts to
advance MOOC data science.

The project founded at MIT includes a platform agnostic
functional data model for data exhaust from MOOCs, a
collaborative-open source-open access data visualization
framework, a crowd sourced knowledge discovery framework and
a privacy preserving software framework.

The team is currently working to release a number of these
tools and frameworks as open source.

Minimalist Isopycnal Model

Oceanographers use numerical models to simulate the ocean
and its effects on climate. Most researchers write their
own simple models, but don’t publish the source code, making
their results unreproducible.

MIM is a simple ocean model written in Fortran 90 meant to
become a basis for other researchers.

MIM’s source code comes with a couple of examples, but no
tests and the documentation is incomplete. The model can be
extended to work in periodic domains and its performance
could be improved.

taco: the Tensor Algebra Compiler
Linear and Tensor algebra are the building blocks of the modern
optimization, simulation, machine learning and data analytics
applications. Hundreds of libraries exist for linear algebra and
recently libraries like Google's TensorFlow provides dense tensor
algebra, but support for sparse tensor algebra is lacking.

The Tensor Algebra Compiler (taco) makes fast and portable sparse
and dense tensor and linear algebra possible.

Taco is written in C++ and promises unprecedented flexibility,
performance and portability. With your help we will make taco the
default library for these domains.

CliNER

CliNER is a natural language processing system for named
entity recognition in the clinical text of electronic health
records. CliNER is designed to identify clinically-relevant
entities mentioned in a clinical narrative, such as
diseases/disorders, signs/symptoms, medications, procedures,
etc.

Its role as a component in clinical pipelines lends well to
user-facing improvements, such as API development (currently
it is primarily used as a command-line tool), identification
of the best packaging option (currently several are
provided), and charting a roadmap for folding in
improvements (currently old methods are removed to introduce
new methods).

CliNER is written in Python.

Tipsy

Tipsy is a Chrome extension for microdonations to support
online content. Participating sites declare a PayPal or
Dwolla account that accepts donations. Tipsy (privately)
tracks the time spent on participating sites and reminds the
user to donate at configurable intervals.

Tipsy is used by a couple of publishers, but further
evangelism is necessary.

Other projects include adding Bitcoin support to Tipsy,
finding ways to support creative commons content that can be
embedded in many pages, and factoring out the
history-tracking component so it can be used by other tools.

NB Classroom Discussion/Annotation Forum

NB is a system for online discussion of course lecture
notes, videos and other material in the margins of that
material.

NB is being used by ten thousand students at over 100
universities around the world to produce over 1 million
comments.

NB is a an old crufty system (Django back-end + Javascript
front end) that has grown haphazardly over many years and
needs significant redesign and re-engineering to use modern
themes, components, libraries, and UI designs.

For students interested in online education and research, NB
provides a platform with real users and data for research
about how online discussion can help people learn. There's a
broad collection of features that have been requested by
users and others we've thought of ourselves, that need to be
implemented (inside the existing crufty code-base),
deployed, studied, and evaluated.

ModelDB
ModelDB is an end-to-end system to track machine learning
models as they are built, store models and metadata in a
centralized fashion, and capture metadata and metrics to
support query, analysis and reuse. It enables ML teams to
version their models, make them reproducible and easy to share,
compare and analyze.

ModelDB is currently being tested at several companies.

Some potential projects:

● building a ModelDB client for a new language or environment
(e.g. R, Lua, Tensorflow)

● adding advanced features to ModelDB depending on feature
requests and new requirements (e.g. in Java, Scala, Python)

● adding visualization capabilities to the frontend to
support more flexible querying of data

● supporting online model updates.

Organization

Feb 7 Overview

Feb 9 Goal-setting; Git and collaboration

Feb 14 End user profile Mentor interview and research notes

Feb 16 Life cycle use case, high-level specification

Feb 21 (Monday schedule) User profiles; identify 2-6 potential users

Feb 23 Studio

Feb 28 User feedback Full use cases and high-level spec

Mar 2 Studio

Mar 7 Development methodologies, minimum viable product User interview results

Mar 9 Studio

Mar 14 Documentation MVP, stretch goals

Mar 16 Studio

Mar 21 Project promotion Documentation plan; some exemplars

Mar 23 Studio Software report

Mar 28 (Spring Break)

Mar 30 (Spring Break)

Apr 4 Customer feedback/testing Promotion plan; beginnings of promotional
materials for the first actual users

Apr 6 Studio

Apr 11 Community strategy Collated customer feedback; updates to MVP
or post-MVP plan

Apr 13 Studio

Apr 18 (Patriots’ Day)

Apr 20 Studio

Apr 25 Software testing Community strategy plan

Apr 27 Studio

May 2 Open source business models Test plan

May 4 Studio

May 9 Licencing

May 11 Open source panel Final promotional material and code going
online if not already; software report

May 16 Student presentations: project pitch 5 minute pitch

May 18 (no class) Roadmap to what you did (writeup)

Grading

Entrepreneurship 40%

Engineering management 14%

Software design, development, implementation 36%

Class participation 10%

