
Quantifying Code 1

Measuring the behavior and performance of software
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We train to think as engineers 
about the problems
we’re trying to solve

We also need to think as engineers
about the process (code)

we use to solve them
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Logging

Parameterization

Testing

Workflow

Profiling
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Logging

Parameterization

Testing

Workflow

Profiling

text, structured

config files

automatic, manual

styles

how it fits together
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This will help you avoid

Bug hunting process that looks like

Vague characterizations like:
      “it’s fast!”
      “this doesn’t take much memory”
      “it seems to work”
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This will help you create

Reproducible results (science!)

Specific knowledge about performance 
characteristics

-> helps you know what to improve first!

Archival data about program performance and 
behavior 
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INPUT OUTPUT

SOFTWARE

Goal: Measure every step of the way
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Logging

INPUT OUTPUT
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Logging Motivation

System.out.println(“Value of x:” + x);

what’s wrong with

?
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Logging Motivation

System.out.println(“Value of x:” + x);
short term solutions like 

• Can’t be shipped
• Don’t scale with the size of your software
• Performance drag
• Hard to sort through
• Don’t provide “archival”-quality metadata
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Logging Motivation

Time File/Class Level Message

Logging Libraries

Provide structure

Provide “levels”

TRACE DEBUG INFO WARN ERROR FATAL

Provide ecosystems for storage, analysis, collection.
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Logging Configuration

Structure

Time File/Class Level Message

You provide

Most logging libraries provide a plethora of output 
formatting & metadata options.

E.g., you can attach system information, memory 
information, etc.
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Logging Configuration

log.warn(“I’m sorry, Dave. I’m afraid I can’t do that”);

WARN 2001-8-8 2:30PM [HAL.openPodBayDoors()] [127.0.0.1] 
I’m sorry, Dave. I’m afraid I can’t do that.
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post hoc analysis
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Logging Log Processing - Analysis

Log files provide after-the-fact analysis.

• Many real-world tasks take hours to complete, or 
run without a human present.

• Entire languages have been created to process logs
 e.g. Sawzall 

• Can configure different sinks for different types of 
logging events 
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Logging Log Processing - Analysis

What are some questions you might be able to ask of logs?
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Logging Log Processing - Analysis

What are some questions you might be able to ask of logs?

• How many users per day experience a fatal error?

• How many users trigger a warning 
  (e.g., a default value is used when it really shouldn’t be)

• Are errors coming from a particular computer?
  Maybe it has a bad hard drive

• What is the distribution of errors per class?
   Maybe development efforts can be prioritized this way
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monitoring & debugging 
distributed systems
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Logging Log Processing - Distributed Systems

log.warn(“I’m sorry, Dave.”);

Remote logging sink
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... important when modern day computing looks like this

You’ve got 100,000s of machines involved.
You can’t personally examine what’s going on -- programs 

have to do it for you.
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performance
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Logging Performance

if (log.debugEnabled()) {
  log.debug(“Total prob mass:” + this.pmass());
}

Performance

What might be good about this line?
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Logging Performance

if (log.debugEnabled()) {
  log.debug(“Total prob mass:” + this.pmass());
}

1. this.pmass() might be an expensive computation.

2. The output is sent to a logger object, instead of STDOUT.
   
   This enables more efficient data management than simply 
dumping to a video card.

Monday, March 18, 13



per word, per tweet, per iteration of a learning process

1M tweets
~30 words per tweet
100 topics per word
1,000 times

-> 3 Trillion Times

Performance matters, even with quick 
logging statements 

if (log.debugEnabled()) {
  log.debug(“Total prob mass:” + this.pmass());
}
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Structured Logging

INPUT OUTPUT

Parameterization &
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• Matrices

• Arrays

• Images, files, properties, etc

Sometimes text isn’t the right data structure

Structured logging is very useful for research code
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Some systems support this by enabling JSON-like 
objects to be passed to the logger.

Instead we’ll talk about a project structure, and set of 
practices, you can use for more complicated recording.

If you decide to go into a research-related field, this will 
save you many all-nighters, I promise.
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/ <-- Configuration stored as files
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/
	  	  	  |
	  	  	  *	  bare-‐bones.conf

Every language has numerous 
configuration management 

libraries. Pick one and learn it.

[modelParams]
alpha: 0
theta: 0

[inputs]
tweets: data/tweets-2012.txt

[preProcessing]
englishOnly: yes
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At run time...

[modelParams]
alpha: 0
theta: 0

[inputs]
tweets: data/tweets-2012.txt

[preProcessing]
englishOnly: yes

x	  *=	  Options.modelParams.alpha

if	  (Options.preProcessing.englishOnly)	  {
	  	  	  ...
}

-‐	  or	  -‐	  
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/
|
*-‐	  experiments/ <-- Each run of the program

persists data to experiments/
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/
|
*-‐	  experiments/
	  	  	  |
	  	  	  *-‐2013-‐03-‐18/
	  	  	  	  	  |
	  	  	  	  	  *-‐001.run/	  <-‐-‐	  directory	  for	  Experiment	  #1	  on	  yyyy-‐mm-‐dd
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PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/
|
*-‐	  experiments/
	  	  	  |
	  	  	  *-‐2013-‐03-‐18/
	  	  	  	  	  |
	  	  	  	  	  *-‐001.run/	  <-‐-‐	  directory	  for	  Experiment	  #1	  on	  yyyy-‐mm-‐dd
	  	  	  	  

$	  ./run-‐project

Monday, March 18, 13



PROJECT-‐ROOT
|
*-‐	  src/
|
*-‐	  lib/
|
*-‐	  config/
|
*-‐	  experiments/
	  	  	  |
	  	  	  *-‐2013-‐03-‐18/
	  	  	  	  	  |
	  	  	  	  	  *-‐001.run/	  <-‐-‐	  directory	  for	  Experiment	  #1	  on	  yyyy-‐mm-‐dd
	  	  	  	  	  |
	  	  	  	  	  *-‐002.run/	  <-‐-‐	  directory	  for	  Experiment	  #2	  on	  yyyy-‐mm-‐dd

The standard log goes here
As well as all program:

input, output, and objects
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Create an Experiment singleton 
that manages these directories

Experiment.begin(configurationFile)

Experiment.rerun(date, run#)

Creates a new directory
Copies in file inputs
Copies in the configuration file
Records git status

Experiment.end()
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Add structured logging methods to 
Experiment

.saveFile(file)

... all of which place the data in the 
experiment directory

.saveArray(arr, filename)

.saveMatrix(arr, filename)

.saveDirectory(dir, zip_filename)
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Timers

.tick(timerName) .tock(timerName)

Experiment.tick(“loadHugeDataFile”)

data	  =	  new	  SparseMatrix(Config.inputFile)

Experiment.tock(“loadHugeDataFile”)

timers.txt
loadHugeDataFile	  20.3s

Monday, March 18, 13



Counters

.inc(counterName, amount=1)

for	  (tweet	  <-‐	  tweets)	  {
	  	  if	  (!	  tweet.isEnglish)
	  	  	  	  Experiment.inc(“foreignTweets”)
}

counters.txt

foreignTweets	  23121

The counter can get really 
fancy, enabling all sorts of 
multi-level counting, 
normalization, histogram 
output, etc.
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Git Integration

.verifyCodeStatus

FAIL to run unless all changes are committed.

Tags the git repository with Date/Experiment#
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You can get really fancy.

Develop a personal toolbelt 
for your languages of choice.

github.com/eob/researchy[scala]
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Measuring Timing
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function	  measureTime(otherFunction,	  iterations)	  
{
	  	  var	  start	  =	  new	  Date().getTime();

	  	  for	  (var	  i	  =	  0;	  i	  <	  iterations;	  i++)	  {
	  	  	  	  otherFunction();
	  	  }

	  	  var	  end	  =	  new	  Date().getTime();
	  	  return	  (end	  -‐	  start);
}

Why measure total time 
instead of per-iteration time?

(js example)
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Profiling

INPUT OUTPUT
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Where is time
memory
allocations
..etc.. being spent?

Answers the question:

“How do we make this {faster, smaller}”
Results can be surprising
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Profiling is usually done through instrumentation of 
your code

• Manual
• Automatic

• (coding example)
• (string example w/ Cougaar)
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