
Quantifying Code 1

Measuring the behavior and performance of software

Monday, March 18, 13

We train to think as engineers
about the problems
we’re trying to solve

We also need to think as engineers
about the process (code)

we use to solve them

Monday, March 18, 13

Logging

Parameterization

Testing

Workflow

Profiling

Monday, March 18, 13

Logging

Parameterization

Testing

Workflow

Profiling

text, structured

config files

automatic, manual

styles

how it fits together

Monday, March 18, 13

This will help you avoid

Bug hunting process that looks like

Vague characterizations like:
 “it’s fast!”
 “this doesn’t take much memory”
 “it seems to work”

Monday, March 18, 13

This will help you create

Reproducible results (science!)

Specific knowledge about performance
characteristics

-> helps you know what to improve first!

Archival data about program performance and
behavior

Monday, March 18, 13

INPUT OUTPUT

SOFTWARE

Goal: Measure every step of the way

Monday, March 18, 13

Logging

INPUT OUTPUT

Monday, March 18, 13

Logging Motivation

System.out.println(“Value of x:” + x);

what’s wrong with

?

Monday, March 18, 13

Logging Motivation

System.out.println(“Value of x:” + x);
short term solutions like

• Can’t be shipped
• Don’t scale with the size of your software
• Performance drag
• Hard to sort through
• Don’t provide “archival”-quality metadata

Monday, March 18, 13

Logging Motivation

Time File/Class Level Message

Logging Libraries

Provide structure

Provide “levels”

TRACE DEBUG INFO WARN ERROR FATAL

Provide ecosystems for storage, analysis, collection.

Monday, March 18, 13

Logging Configuration

Structure

Time File/Class Level Message

You provide

Most logging libraries provide a plethora of output
formatting & metadata options.

E.g., you can attach system information, memory
information, etc.

Monday, March 18, 13

Logging Configuration

log.warn(“I’m sorry, Dave. I’m afraid I can’t do that”);

WARN 2001-8-8 2:30PM [HAL.openPodBayDoors()] [127.0.0.1]
I’m sorry, Dave. I’m afraid I can’t do that.

Monday, March 18, 13

post hoc analysis

Monday, March 18, 13

Logging Log Processing - Analysis

Log files provide after-the-fact analysis.

• Many real-world tasks take hours to complete, or
run without a human present.

• Entire languages have been created to process logs
 e.g. Sawzall

• Can configure different sinks for different types of
logging events

Monday, March 18, 13

Logging Log Processing - Analysis

What are some questions you might be able to ask of logs?

Monday, March 18, 13

Logging Log Processing - Analysis

What are some questions you might be able to ask of logs?

• How many users per day experience a fatal error?

• How many users trigger a warning
 (e.g., a default value is used when it really shouldn’t be)

• Are errors coming from a particular computer?
 Maybe it has a bad hard drive

• What is the distribution of errors per class?
 Maybe development efforts can be prioritized this way

Monday, March 18, 13

monitoring & debugging
distributed systems

Monday, March 18, 13

Logging Log Processing - Distributed Systems

log.warn(“I’m sorry, Dave.”);

Remote logging sink

Monday, March 18, 13

... important when modern day computing looks like this

You’ve got 100,000s of machines involved.
You can’t personally examine what’s going on -- programs

have to do it for you.

Monday, March 18, 13

performance

Monday, March 18, 13

Logging Performance

if (log.debugEnabled()) {
 log.debug(“Total prob mass:” + this.pmass());
}

Performance

What might be good about this line?

Monday, March 18, 13

Logging Performance

if (log.debugEnabled()) {
 log.debug(“Total prob mass:” + this.pmass());
}

1. this.pmass() might be an expensive computation.

2. The output is sent to a logger object, instead of STDOUT.

 This enables more efficient data management than simply
dumping to a video card.

Monday, March 18, 13

per word, per tweet, per iteration of a learning process

1M tweets
~30 words per tweet
100 topics per word
1,000 times

-> 3 Trillion Times

Performance matters, even with quick
logging statements

if (log.debugEnabled()) {
 log.debug(“Total prob mass:” + this.pmass());
}

Monday, March 18, 13

Structured Logging

INPUT OUTPUT

Parameterization &

Monday, March 18, 13

• Matrices

• Arrays

• Images, files, properties, etc

Sometimes text isn’t the right data structure

Structured logging is very useful for research code

Monday, March 18, 13

Some systems support this by enabling JSON-like
objects to be passed to the logger.

Instead we’ll talk about a project structure, and set of
practices, you can use for more complicated recording.

If you decide to go into a research-related field, this will
save you many all-nighters, I promise.

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/ <-- Configuration stored as files

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/
	 	 	 |
	 	 	 *	 bare-‐bones.conf

Every language has numerous
configuration management

libraries. Pick one and learn it.

[modelParams]
alpha: 0
theta: 0

[inputs]
tweets: data/tweets-2012.txt

[preProcessing]
englishOnly: yes

Monday, March 18, 13

At run time...

[modelParams]
alpha: 0
theta: 0

[inputs]
tweets: data/tweets-2012.txt

[preProcessing]
englishOnly: yes

x	 *=	 Options.modelParams.alpha

if	 (Options.preProcessing.englishOnly)	 {
	 	 	 ...
}

-‐	 or	 -‐	

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/
|
*-‐	 experiments/ <-- Each run of the program

persists data to experiments/

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/
|
*-‐	 experiments/
	 	 	 |
	 	 	 *-‐2013-‐03-‐18/
	 	 	 	 	 |
	 	 	 	 	 *-‐001.run/	 <-‐-‐	 directory	 for	 Experiment	 #1	 on	 yyyy-‐mm-‐dd
	 	 	 	

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/
|
*-‐	 experiments/
	 	 	 |
	 	 	 *-‐2013-‐03-‐18/
	 	 	 	 	 |
	 	 	 	 	 *-‐001.run/	 <-‐-‐	 directory	 for	 Experiment	 #1	 on	 yyyy-‐mm-‐dd
	 	 	 	

$./run-‐project

Monday, March 18, 13

PROJECT-‐ROOT
|
*-‐	 src/
|
*-‐	 lib/
|
*-‐	 config/
|
*-‐	 experiments/
	 	 	 |
	 	 	 *-‐2013-‐03-‐18/
	 	 	 	 	 |
	 	 	 	 	 *-‐001.run/	 <-‐-‐	 directory	 for	 Experiment	 #1	 on	 yyyy-‐mm-‐dd
	 	 	 	 	 |
	 	 	 	 	 *-‐002.run/	 <-‐-‐	 directory	 for	 Experiment	 #2	 on	 yyyy-‐mm-‐dd

The standard log goes here
As well as all program:

input, output, and objects

Monday, March 18, 13

Create an Experiment singleton
that manages these directories

Experiment.begin(configurationFile)

Experiment.rerun(date, run#)

Creates a new directory
Copies in file inputs
Copies in the configuration file
Records git status

Experiment.end()

Monday, March 18, 13

Add structured logging methods to
Experiment

.saveFile(file)

... all of which place the data in the
experiment directory

.saveArray(arr, filename)

.saveMatrix(arr, filename)

.saveDirectory(dir, zip_filename)

Monday, March 18, 13

Timers

.tick(timerName) .tock(timerName)

Experiment.tick(“loadHugeDataFile”)

data	 =	 new	 SparseMatrix(Config.inputFile)

Experiment.tock(“loadHugeDataFile”)

timers.txt
loadHugeDataFile	 20.3s

Monday, March 18, 13

Counters

.inc(counterName, amount=1)

for	 (tweet	 <-‐	 tweets)	 {
	 	 if	 (!	 tweet.isEnglish)
	 	 	 	 Experiment.inc(“foreignTweets”)
}

counters.txt

foreignTweets	 23121

The counter can get really
fancy, enabling all sorts of
multi-level counting,
normalization, histogram
output, etc.

Monday, March 18, 13

Git Integration

.verifyCodeStatus

FAIL to run unless all changes are committed.

Tags the git repository with Date/Experiment#

Monday, March 18, 13

You can get really fancy.

Develop a personal toolbelt
for your languages of choice.

github.com/eob/researchy[scala]

Monday, March 18, 13

Measuring Timing

Monday, March 18, 13

function	 measureTime(otherFunction,	 iterations)	
{
	 	 var	 start	 =	 new	 Date().getTime();

	 	 for	 (var	 i	 =	 0;	 i	 <	 iterations;	 i++)	 {
	 	 	 	 otherFunction();
	 	 }

	 	 var	 end	 =	 new	 Date().getTime();
	 	 return	 (end	 -‐	 start);
}

Why measure total time
instead of per-iteration time?

(js example)

Monday, March 18, 13

Profiling

INPUT OUTPUT

Monday, March 18, 13

Where is time
memory
allocations
..etc.. being spent?

Answers the question:

“How do we make this {faster, smaller}”
Results can be surprising

Monday, March 18, 13

Profiling is usually done through instrumentation of
your code

• Manual
• Automatic

• (coding example)
• (string example w/ Cougaar)

Monday, March 18, 13

