MIT Class 6.S080 (AUS) Mechanical Invention through Computation

Iris Structures

Innovative Technology Radial Aperture (Iris)

HOBERMAN 🍪

ADAPTIVE

B U I L D I N G I N I T I A T I V E

Tris Structures

• Circle linkage, 12 scissor pairs

retracted

extended

.

Tris Structures

- Connect 2nd circle linkage to 1st
- Outer pivots of inner linkage connected to inner pivots of outer linkage

extended

retracted

.

• Third linkage connected to other two linkages

τ.

• Alternate view of folded geometry – interlocking hexagons

÷.

• Constructed circular iris

• Constructed circular iris – note that pivots go through four links (except for inner and outer perimeter, which go through 2 links)

Comparison between two iris scissor constructions note correlation

- 30 degree angle has 3 scissors
- 15 degree angle has 6 scissors

Generally, smaller angle has more scissors and achieves greater compression ration when retracted

• Six ring (circular) linkages • 24 scissors per ring

.

[•]Iris structures

⁺Iris structures

Iris using links as covering panels

Iris curtain

Structural approach

Olympic Arch, Salt Lake City 2002

Olympic Arch, Salt Lake City 2002

Olympic Arch, Salt Lake City 2002

Olympic Arch, Salt Lake City 2002

Iris structures – defining by a curve on spherical surface

Tong linkage border is isosceles triangle – surfaces can be defined as shown

Iris (vaulted surface)

Iris (vaulted surface)

Iris (vaulted surface)

Iris - single curvature construction

FIG.13

FIG.15

Iris - single curvature construction

Iris (saddle surface)

Iris - single curvature construction

Scale

Support Case 2

	Dead Load Only			90 MPH Wind (Side) + DL			90 MPH Wind (Front) + DL		
Mada	0%	50%	100%	0%	50%	100%	0%	50%	100%
10100	P2 (IDS)	FZ (IDS)	FZ (IDS)	FZ (IDS)	FZ (IDS)	PZ (IDS)	FZ (IDS)	FZ (IDS)	FZ (IDS)
10110	363.82	404.67	437.01	251 19	249.63	312.9	507.58	598.24	483.94
120110	362 91	416	453 13	219.48	237 26	333.02	959 62	996.68	849 81
130110	365.78	406.03	437.68	139,41	172.37	261.6	897,94	920.74	800.8
20110	221.83	239.4	266.06	192.12	177.4	224.84	328.19	365.76	306.3
110110	258.38	302.5	339.64	188.31	187.64	261,56	778.89	806.95	669.68
140110	224.31	241.03	266.69	-2.87	19.3	95.22	594,47	595.11	509
230110	260.79	303.61	338,49	5.78	40.07	147.25	389,55	491.99	381.61
30110	314.53	303.99	299.92	319.34	303.91	302.82	300.7	268.2	239,42
100110	246.31	254.94	277.8	230.78	222.36	256.57	514,73	518,76	476,68
150110	315,38	304.53	300.3	211.09	205.7	221.27	469.76	462.84	435.68
220110	248.86	256.79	278.4	90.76	99.27	159.89	277,94	290.4	252 01
40110	528.58	503,56	444,5	545.82	534.91	464,85	3/3 83	291 36	241.04
90110	450.08	420.04	3/4.33	4/0.30	434,89	389.9	417.93	410,23	417.82
100110	020	400.07	274.41	476 09	0/4.00	510,34	4/0.13	220 12	409.32
50110	275 10	270.48	274.41	274 30	285.28	280.38	168 68	200,12	126.68
80110	270.10	372 22	325 80	405 72	203.20	324 85	300.88	334 13	340.01
170110	274 65	279.02	273 59	326.72	328.71	317.99	264	300.48	319 18
200110	388.59	371.79	326	473.53	462.44	399.89	244.78	184.6	160.47
60110	-3.63	17.88	60 16	-15.37	5.18	57,35	-21.75	2.47	31.01
70110	53.46	66.72	94.28	46.98	59.3	88.51	54.92	88.86	124.25
180110	-3.92	17.65	59.93	3.52	14.83	45.92	22.15	61.76	99.55
190110	53.15	66.5	94.23	77.32	83.42	98.05	14.2	25.39	49.43
20406	1616.92	1730.12	1977.99	1265.7	1205.28	1253.65	2014.63	2216.38	1977.27
120406	1550.55	1745.57	2045.97	1061.9	1050.27	1167 53	3475.99	3708.26	3848.37
140406	1627.48	1737 33	1981.21	1027.34	1179.82	1679.57	3126.22	3250,83	3427.71
240406	1561.66	1752.61	2045.02	897.63	1057.82	1575.05	2052.91	2484.15	2193.36
50406	2382.43	2252.21	1936.05	2561.44	2524.86	2085.56	1440.44	1003.87	815.95
90406	2449.41	2280.85	1936.62	2679.25	2560 73	1973.64	859.08	814.35	841.02
170406	2378.74	2249.09	1931.2	3364.56	3356.75	3194.78	852,92	809.39	762.57
210406	2448.26	2281.35	1942.15	3386.1	3365.95	3154.34	1556.72	1080,82	974.99
20906	1869.55	2016.44	2638.18	1403.12	1206.11	12/0.45	2362.93	2/5/./2	2585.56
120906	1835.91	2036.59	20/1.4	1328.29	1149.59	11/3.09	3393.4	3655.39	4/8/.09
240006	1927.20	2020.4	2044.70	1300.90	1430.07	2004.42	2284.48	2973.69	2746 41
50906	2029.7	2711 23	2127 31	3116 35	3053.63	2153 15	1858 38	1033.05	176.83
90906	2952.26	2718 11	2133.06	3159 12	3018 42	1935 08	1744 13	1404	1446.01
170906	2924.9	2707.27	2120.92	3908.03	3984.86	4020.6	1631.18	1243.21	1109.76
210906	2949.23	2715.96	2136.93	3809.21	3870.85	3806.12	2011.36	1217.55	532.19
21406	1675.92	2020.13	2776.2	1292.82	943.53	1556.19	2106.32	2917.7	1694.52
121406	1699.57	2060.17	2760.08	1326.48	945.38	1367.63	2575.41	3922.62	4141.75
141406	1704.08	2047.34	2796.91	1396.9	1594.26	3206.33	2611.69	3894.43	4041.41
241406	1651.02	2011.92	2699.35	1471.2	1628.62	3005.73	1937.65	2928.07	1820.49
51406	2786.78	2439.81	1658.47	2915.28	2834.3	1152.69	1970.16	215.58	-402.43
91406	2782.41	2429.8	1625.07	2941.58	2792.15	918,41	2111.93	1372.71	2570.95
171406	2784.89	2436.67	1651.81	3497.74	3944.49	3745.7	2024.07	1141.15	2159.87
211406	2773.95	2421.47	1623.94	3338.57	3725,45	3377.82	2082.41	428.9	-55.96
21906	1833.52	2172.62	2769.89	1520.14	825.24	1628.67	2133.38	3211.26	1511,49
121906	1875.27	2180.15	2691.39	1592.49	778.57	1295.99	2057.47	3102.85	2051.92
141906	1837.98	2198.85	2/88.66	1649./1	1/55./2	3081.25	2058,18	3114.25	1902.18
241906	1844.25	2153.73	2649.41	1/99.6/	1802.59	2823.18	1945.56	3154.8/	1607.32
01006	2921.70	2301.01	1794.11	2905.72	2042.94	209.04 EC EA	2509.52	-150,72	4279.02
171906	2006.67	2344 43	1778 52	3330 55	3475 34	2445.67	2020.14	1494 20	4146 66
211906	2868.94	2323 41	1709 75	3132 51	3222.74	2072 45	2372 55	44.91	1196.86
22406	1262 79	1785.11	2083 1	1139.32	1449.58	3023.2	1413.91	1904.5	-1096.8
122406	1246.61	1701.98	1934.71	1146.02	1295.16	2641.42	1377.16	2344.06	1041.25
142406	1197.77	1724.48	2014.72	1194.82	1853,96	3346.35	1354.45	2247.35	825.43
242406	1142.27	1609.74	1833.7	1224.3	1770.27	3012.35	1174.79	1684.46	-1101.15
52406	2132.85	1865.13	1740.09	2163.87	1813.13	418.64	1936.41	705.86	1555.15
92406	2042.51	1752.64	1551.66	2100.13	1719.2	112.28	2237.47	3558.95	7222.95
172406	2085.9	1811.32	1684.62	2361.19	2945.33	3320.34	2244.84	3463,71	6931.34
212406	2035.42	1745.53	1546.04	2217.41	2721.21	2867.88	1901.83	760.96	1719.7

Cable Loads

HOBERMAN

Project Baroo (2000) Aysthed Hobernen Associaties Inc. Deseng No. 116 Huit Associaties Take Hoeston (11 Dese 2008-15/01

U2 360 Tour

Same Summer Samuel Summer

HILL AND S HILLS AND STATE

Iris - double curvature construction

Iris - double curvature construction

Iris - single curvature construction

Expo 2000, Hannover

Resolving forces between kinematic and structural modes

Stability defined as a process, not a state

Iris - hub construction

Iris structures

Iris structures

÷.

• Constructed circular iris

Isosceles triangle regions (shaded)

Alternating regions between Isosceles triangle regions (non-shaded) To define retracted position

- 1. Create similar rhombs within isosceles triangles
- 2. 2. Connect isosceles regions with similar rhombs

