MIT Class 6.S080 (AUS) Mechanical Invention through Computation

Mechanism Basics

Design Principles Structure and Mechanism

Structure: Force is resisted

Mechanism:

Force flows into movement

Design Principles Structure and Mechanism

Possible Responses to Applied Force

Mechanism paradigms

Synthesize a motion path

Synthesize a form change

Definitions

- Kinematics: the study of the motion of bodies without reference to mass or force
- Links: considered as rigid bodies
- Kinematic pair: a connection between two bodies that imposes constraints on their relative movement. (also referred to as a mechanical joint)
- Ground: static point of reference
- Degree of freedom (DOF): of a mechanical system is the number of independent parameters that define its configuration.

Links types

Links of different order

Kinematic pairs

Historic Mechanisms

the same as that running off the other. The band for the alley a is identical—coincident—with that for b, the corre-

FIG, 183.

Straight-line linkages (James Watt)

Straight-line linkages (Richard Roberts)

Straight-line linkages (Tchebicheff)

Peaucellier Linkage

Straight-line linkages (Peaucellier)

Straight-line linkages (Kempe)

4-bar linkage types

Kinematic inversions

(a) Two non-distinct crank-rocker inversions (GCRR)

(c) Double-rocker inversion (GRCR) (coupler rotates)

Four-bar linkage examples

Parallel 4-bar

Anti-parallel 4-bar

Gruebler's equation

N = Number of Links (including ground link)P = Number of Joints (pivot connections between links)

- Each link has 3 degrees of freedom
- Each pivot subtracts 2 degree of freedom

DOF = 3 (N-1) - 2P

dof = 3 X (4-1) - (2 X 4) = 1

Examples

P = 4 DOF = 3X(4-1)-(2X4)=1

Examples


```
(b) Geared fivebar linkage-1 DOF
```

Geared connection removes one degree of freedom DOF = 1 Examples

N = 8 P = 10 DOF = 3X(8-1)-(2X10)=1

Relation of DOF to special geometries

Agrees with Gruebler's equation (**doesn't move**)

Doesn't agree with Gruebler's equation (**moves**)

$$N = 5$$

 $P = 6$
 $DOF = 3X(5-1)-(2X6) = 0$

Graph of linkages

DOF=3(N-1)-2P

Scissor Linkages

Scissor mechanisms

Historic examples of scissor mechanisms

Emilio Pinero

Historic examples of scissor mechanisms

Emilio Pinero

Examples of scissor mechanisms

Sergio Pellegrino

Felix Escrig

Curvature of scissor mechanisms

Off-center connection point => structures of variable curvature

Scissor Types

Angulated scissors

Provides invariant angle during deployment

Scissor mechanism: demonstration

Parallel / Symmetric

Scissor mechanism: demonstration

Off-center connection

Scissor mechanism: demonstration

Angulated link: geometric construction

Angulated link: geometric construction

Tong linkage

Hinged rhombs – transforming between configurations

Arc - geometric construction

Circle - geometric construction

Ring linkages

Ring linkages

Ellipse - geometric construction

Unequal rhombs

Unequal rhombs

Constructing expanding polygons

Irregular polygon – geometric construction

Degrees of freedom of a tong linkage

Number of pivots for a tong linkage: P = 3N/2 - 2 DOF = 3 X (N-1) - 2P= 3N - 3 - (3N - 4) = 1

Number of pivots for a closed tong linkage: P = 3N/2 DOF = 3 X (N-1) - 2P= 3N - 3 - 3N = -3

Unequal rhombs with crossing connection

Unequal rhombs with crossing connection

.

Polygon linkages with fixed centers

circular linkage with fixed center (four spokes)

Circular linkages with fixed center

Construction for off-center fixed point

Ring linkages

Degrees of freedom (Graver formulation)

Each point (pivot) has 2 degrees of freedom Each link subtracts 1 degree of freedom J = Number of joints (2D points in the plane) R = Number of links (not including ground link)

Examples

DOF = 2J - R

J = 2 R = 3 DOF = (2X2)-(3X1)=1

J = 3 R = 5 DOF = (2X3)-(5X1)=1

J = 4 R = 7 DOF = (2X4)-(7X1)=1

Figure 2.1

Configuration Space

configuration \longrightarrow point

 \bigcirc

Rigidity Depends on Configuration

Generic Rigidity

generically rigid

generically flexible

Generic Rigidity

generically rigid

generically flexible

Laman's Theorem [1970]

- Generically rigid in 2D if and only if you can remove some extra bars to produce a minimal graph with
 - 2J 3 bars total, and
 - at most 2 k 3 bars between every subset of k joints

Laman's Theorem [1970]

- Generically rigid in 2D if and only if you can remove some extra bars to produce a minimal graph with
 - 2 J 3 bars total, and
 - at most 2 k 3 bars between every subset of k joints

