
6.897 Advanced Data Structures (Spring’05)

Prof. Erik Demaine TA: Mihai Pǎtraşcu

Problem 8 – Solution

From RMQ to 3-sided queries. The relation is immediate. For each y ∈ {1, . . . , n}, let
A[y] = min{x | (x, y) ∈ S}. When we want to query the range [0, b] × [c, d], we use an RMQ query
to find t = min{A[y] | y ∈ [c, d]}. If t > b, the range is empty; otherwise, it contains at least one
point.

From 3-sided to general queries. Without loss of generality, n is a power of two. Consider a
perfect binary tree over the x-coordinate. Each node represents a vertical strip of space; say this
is [a, b] × [1, n]. For each such strip (except the root, which gives the entire space), we build a
structure for 3-sided queries. If the node is the right child of its parent, this structure assumes the
left side of the rectangle is on the a abscissa. If the node is a left child, it assume the right side in
fixed to b. Even though we have described 3-sided queries as fixing one side to 0, we can actually
fix it to anything, by horizontal translation, and possibly a reflection.

For every 3-sided structure that we build, we must also include a predecessor structure. This is
needed because the 3-sided structure has less than n points. Thus, we must convert from the original
rank space to this new (sparser) rank space. This can be done by building a predecessor structure
on the set of y-coordinates of the points in the 3-sided structure. We then run two predecessor
queries to convert the y boundaries of the rectangle to the new rank space. We implement these
predecessor structures using y-fast trees. Note that the universe is {1, . . . , n}, so a query takes
O(lg lg n) time.

The space for each of the 3-sided structures is σ times the number of points in the structure.
Every point appear in exactly lg n structures (one for each ancestor in the tree of its x coordinate).
Thus, the total space is O(n lg n · σ). The predecessor structures take space linear in the number
of points of the 3-sided structures, so they form an additional constant factor.

Now assume we want to query the range [a, b]× [c, d]. We find the lowest common ancestor (call
it v) of a and b. This can be done in constant time: we take the xor of a and b and find the most
significant set bit (which was in our standard set of bit tricks). Now, the left child of v contains
a; let m be the rightmost abscissa under this node. The right child of v contains b; the leftmost
abscissa under it is m + 1. We have broken our range query into two queries: [a,m] × [c, d] and
[m + 1, b] × [c, d]. Since we are doing existential queries, we take the or of the two answers. Both
of these queries are 3-sided queries, in the left and right children of v, respectively. We use the
predecessor structures to convert c and d into the rank space of the 3-sided structures, and then
run the 3-sided queries. Thus, our running time is 2τ + O(lg lg n).

1


