From RMQ to 3-sided queries. The relation is immediate. For each \(y \in \{1, \ldots, n\} \), let \(A[y] = \min\{x \mid (x, y) \in S\} \). When we want to query the range \([0, b] \times [c, d]\), we use an RMQ query to find \(t = \min\{A[y] \mid y \in [c, d]\} \). If \(t > b \), the range is empty; otherwise, it contains at least one point.

From 3-sided to general queries. Without loss of generality, \(n \) is a power of two. Consider a perfect binary tree over the \(x \)-coordinate. Each node represents a vertical strip of space; say this is \([a, b] \times [1, n]\). For each such strip (except the root, which gives the entire space), we build a structure for 3-sided queries. If the node is the right child of its parent, this structure assumes the left side of the rectangle is on the \(a \) abscissa. If the node is a left child, it assume the right side in fixed to \(b \). Even though we have described 3-sided queries as fixing one side to 0, we can actually fix it to anything, by horizontal translation, and possibly a reflection.

For every 3-sided structure that we build, we must also include a predecessor structure. This is needed because the 3-sided structure has less than \(n \) points. Thus, we must convert from the original rank space to this new (sparser) rank space. This can be done by building a predecessor structure on the set of \(y \)-coordinates of the points in the 3-sided structure. We then run two predecessor queries to convert the \(y \) boundaries of the rectangle to the new rank space. We implement these predecessor structures using \(y \)-fast trees. Note that the universe is \(\{1, \ldots, n\} \), so a query takes \(O(\lg \lg n) \) time.

The space for each of the 3-sided structures is \(\sigma \) times the number of points in the structure. Every point appear in exactly \(\lg n \) structures (one for each ancestor in the tree of its \(x \) coordinate). Thus, the total space is \(O(n \lg n \cdot \sigma) \). The predecessor structures take space linear in the number of points of the 3-sided structures, so they form an additional constant factor.

Now assume we want to query the range \([a, b] \times [c, d]\). We find the lowest common ancestor (call it \(v \)) of \(a \) and \(b \). This can be done in constant time: we take the xor of \(a \) and \(b \) and find the most significant set bit (which was in our standard set of bit tricks). Now, the left child of \(v \) contains \(a \); let \(m \) be the rightmost abscissa under this node. The right child of \(v \) contains \(b \); the leftmost abscissa under it is \(m + 1 \). We have broken our range query into two queries: \([a, m] \times [c, d]\) and \([m + 1, b] \times [c, d]\). Since we are doing existential queries, we take the or of the two answers. Both of these queries are 3-sided queries, in the left and right children of \(v \), respectively. We use the predecessor structures to convert \(c \) and \(d \) into the rank space of the 3-sided structures, and then run the 3-sided queries. Thus, our running time is \(2\tau + O(\lg \lg n) \).