6.897 ADVANCED DATA STRUCTURES (SPRING ’05)
Prof. Erik Demaine TA: Mihai Pătraşcu

Problem 7 Due: Wednesday, Mar. 30

Timing: This problem is due after spring break. In the spirit of not making you work during the break, we are making the problem due on a Wednesday, so you can decide to only look at it after school resumes.

Prove that on a word RAM with \(w \)-bit words, one can sort \(n \) \(w \)-bit integers in time \(O(n \lg \frac{w}{\lg n}) \). The algorithm can be randomized (the time bound must hold in expectation).

Hints: Think of van Emde Boas, and find a way to reduce sorting \(n \) integers of \(w \) bits to the problem of sorting \(n \) integers on \(\frac{w}{2} \) bits. Bottom out the recursion in a linear-time sorting algorithm (for \(w = \lg n \)). Note that you must reduce to a problem on exactly (or at most) \(n \) integers, not on \(O(n) \) integers (if you don’t see why, brush up on your recursions). The only randomness needed in the algorithm is through black-box use of hash tables.

In class, we saw that for \(w = \Omega(\lg^{2+\varepsilon} n) \), we can sort in linear time. In general, the sorting time drops quickly when \(w \) exceeds \(\lg^2 n \). This problem shows that the sorting time also drops quickly when \(w \) approaches \(\lg n \). Thus, the hardness of sorting is concentrated in a very narrow interval for \(w \): between \(\lg^{1+\varepsilon} n \) and \(\lg^2 n \). What happens in this interval remains an important open problem.