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Problem 5 – Solution

Choose a constant c such that max{tu, S} = O(nc−1). We consider Θ(n1/c) “summary” ele-
ments, which are spaced relatively evenly, i.e. there are Θ(n1−1/c) elements of the set between two
consecutive elements of the summary. We construct a data structure for the summary elements,
and then we recurse for the intervals between every two summary elements, as well as the two
extremes (before the min and max in the summary). When we’re down to O(1) elements we use
some brute-force solution. Note that elements in the summary do not appear in lower levels – we
recurse strictly between summary elements.

The space is given by S′(n) = S(n1/c) + n1/c · S′(n1−1/c) = n(c−1)/c + n1/c · S′(n1−1/c). In the
recursion tree, the bottom level dominates, and it has cost just O(n), so S′(n) = O(n). Given a
set of n elements in order, we can construct our recursive structure in time O(n) – the recursion
for the construction time is the same, with tu instead of S.

A query can query the data structure in the root node, and then recurse in the appropriate
interval. We keep the closest predecessor seen in the summaries from above, so that we can return
that value if we find that our seach key is smaller than every element in the recursive set. The
running time is t′q(n) = t′q(n

1/c) + t′q(n
1−1/c), because we only recurse in one subtree. We have

O(lg lg n) levels, because lg n decreases by a factor of 1 − 1
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So the query time is given by a geometric with rate (1 − 1
c )

α, and therefore tq(n) = Θ(lgα n).
Now we need to discuss how to maintain the structure dynamically. Insertions are propagated

recursively. However, we need to maintain that the elements of the summary are relatively evenly
spread. Say the number of elements between two summary values (in some arbitrary node, not
necessarily the root) was initially X = Θ(n1−1/c). If after a number of insertions, it reaches 2X,
we take the median, and insert it into the summary. This requires rebuilding the summary, in time
O(n(c−1)/c) = O(n1−1/c). Also, we rebuild the two new intervals recursively. As shown above, this
takes time linear in the size of the intervals, i.e. O(n1−1/c). Thus, a split costs us O(n1−1/c), and
this can be amortized because X doubled. The cost of an insertion is given by the cost to search
for that element (so that we know where to insert it), plus the increase in potential that covers
future rebuildings. An element increments some X on every level, so the total amortized cost is
O(lg lg n), which is less than the search cost.
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