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1 Overview

In this lecture, we consider data structures using close to the information theoretic space. We
survey some existing low-space results, including for suffix trees and arrays, which will be the focus
of next lecture. We also describe rank and select, two primitives using o(n) space that are often
used in succinct data structures. We also discuss the isomorphism between binary tries, rooted
ordered trees, and balanced parentheses.

2 Preliminaries

Suppose that Z is the information-theoretic optimum number of bits to store some data.

Definition 1. An implicit data structure uses only Z bits. An alternative definition is that it
stores only its input data, arranged in some order.

Definition 2. A succinct data structure uses only Z + o(Z) bits.

Definition 3. A compact data structure uses only O(Z) bits.

Some results on low-space data structures are summarized below. All except the first one are for
static data structures.

• implicit dynamic search trees [FG03]: support O(log n) time worst-case insert, delete, and
predecessor/successor queries, in the comparison model. They store just some permutation
of the input keys.

• succinct dictionaries [BM99], [Pag01]: use lg
(
u
n

)
+ O(n(lg lg n)2

lg n ) bits, and support O(1) mem-
bership queries; u is the size of the universe from which the n elements are drawn.

• succinct binary tries [MR01]. There are Cn =
(
2n
n

)
/(n + 1) ∼ 4n = 22n distinct binary tries.

This data structure uses 2n + o(n) bits and supports O(1) left child, right child, parent, and
subtree size queries.

• compact k-ary trie [BDMRRR05]. There are Ck
n =

(
kn+1

n

)
/(kn + 1) distinct k-ary tries;

lg Ck
n ∼ (lg k +lg e)n. This structure uses (dlg ke+ dlg ee)n+ o(n) bits (very close to succinct,

for large k) and supports O(1) child-of-label-i, parent, and subtree size queries.

• succinct ordered rooted tree [BDMRRR05]. There are Cn distinct ordered rooted trees. The
data structure uses 2n+o(n) bits and supports O(1) ith child, parent, and subtree size queries.
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Figure 1: A binary trie, with external nodes attached.

3 Representation of Binary Tries

To motivate our future work, we introduce a space-efficient representation of binary tries. Given a
binary trie, its level order representation is defined by first attaching external nodes, and then
traversing it across each level and appending a 1 for an internal node and a 0 for an external node.
This is equivalent to an initial 1, followed by traversing the tree across levels, appending 1 or 0 for
whether the left child exists, and 1 or 0 for whether the right child exists. For the example tree
from Figure 1, the level order representation is 111011101000000. This representation needs just
2n + 1 bits, which is very close to optimal.

For the representation to be useful, we must be able to navigate it efficiently. We will show how
to find the left and right children, as well as the parent of any given node. Say our node is the ith

internal of the trie. Then, we show its children are at positions 2i and 2i + 1. Assume the original
node was at position i + j, i.e. there are j external nodes before the ith internal node. The i − 1
previous internal nodes have 2(i − 1) children. Of these, i − 1 have appeared before as internal
nodes, and j appeared as external nodes. Then, the left child of our current node is at position
(i + j) + 2(i− 1)− (i− 1)− j + 1 = 2i.

4 rank and select

We first define two useful functions on bit sequences, and describe implementations with O(1) query
time and o(n) space.

Definition 4. rank(i) is the number of 1’s at or before index i.

Definition 5. select(i) is the index of the ith 1-bit.

Using rank and select, we can easily define the navigation functions for binary tries. Starting
with the node on position k, we have:

• left-child(k) = 2 · rank(k)

• right-child(k) = 2 · rank(k) + 1

• parent(k) = select(bk/2c)
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4.1 Implementation of rank [Jac89]

The main idea is to use indirection, and use lookup tables on strings of 1
2 lg n bits. Since there

are
√

n distinct strings of this length, 1
2 lg n possible queries for each, and lg lg n bits to store the

answer, the space used is O(
√

n lg n lg lg n) bits.

We would like to break the n-bit string into segments and store the rank at the beginning of each
segment; however, with O(n/ lg n) segments, it would require lg n space to store each rank, which
makes space usage linear. Instead, first we break the n-bit string into lg2 n-bit chunks; it takes
O(n/ lg n) space to store the rank at the beginning of each chunk. Then break each lg2 n-bit chunk
into 1

2 lg n-bit segments. Now storing the rank within the chunk at the beginning of each segment
only costs O(lg lg n) bits of space, because the value is at most lg2 n. This requires a total space
of O( n

lg n lg lg n) = o(n). Rank can be computed as the sum of the chunk value, the segment value,
and then the value from the lookup table.

4.2 Implementation of select [CM96]

We split the string into buckets such that each contains lg n lg lg n 1’s (except possibly the last
one, which can have fewer). An array stores the index of the beginning of each bucket; it uses
O( n

lg n lg lg n lg n) = O( n
lg lg n) space. (Reducing this size is an open problem.)

Say that the size of a bucket is r. If r ≥ (lg n lg lg n)2, then store the bucket as an array whose ith

element is the index of the ith 1. Then the space used is O(lg n lg lg n · lg n) for each bucket of at
least (lg n lg lg n)2 bits. Thus, the amortized (per bit) space used is O(1/ lg lg n), so the total space
is O(n/ lg lg n).

Otherwise, we know lg n lg lg n ≤ r ≤ (lg n lg lg n)2. We recurse this structure inside the bucket,
using r in place of n. After a constant number of recursions, we reach a range of at most 1

2 lg n, so
we can store a lookup table using sublinear space (similar to rank).

5 Binary Tries, Rooted Ordered Trees, and Balanced Parentheses

It is no coincidence that for a given n, there are the same number (the nth Catalan number, Cn)
of binary tries, rooted ordered trees, and balanced parentheses expressions; isomorphisms exist
between them. To convert a binary trie into a rooted ordered tree (with an extra node), convert
right paths into children, in order, of the parent of the top of the path; the root’s right path becomes
the child of an extra node. To convert a rooted order trie into a balanced parentheses expression,
traverse the tree depth-first, writing a “(” the first time a node is visited and “)” for the last time
it is visited. It is not difficult to show that inverses of these transformations exist, so that they are
isomorphisms.

We can then associate each node in the binary trie with a node in the rooted ordered tree and the
left parenthesis from when it was first visited in the balanced parentheses. This allows us to mkae
associations in Table 1.

The result in the last row is important because it allows leaf-rank and leaf-select to be defined
using rankP and selectP , which are rank and select with respect to a fixed pattern P , where
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binary trie rooted ordered tree balanced parentheses
node x node x left paren. X
left child of x first child of x X + 1
right child of x next sibling of x X’s matching right paren. + 1
parent of x previous sibling of x or parent of x matching left paren. of X − 1 or X − 1
size of x’s subtree size of subtree of x and siblings to its right 1

2 (parent’s matching right paren. −X)
x is a leaf x is a last sibling and a leaf X begins “())”

Table 1: Associations between structural elements.

|P | = O(1); this can also be done in sublinear space [MRR03]. Then the leftmost leaf in a node x’s
subtree can be found as leaf-select(leaf-rank(x) + 1), and the rightmost leaf similarly.

6 Survey of Compact Suffix Trees and Arrays

There are several interesting results on small-space suffix trees/arrays, some of which will be covered
in the next lecture. Let T be the text, P be the pattern, and Σ the alphabet. An important open
problem is whether there exists a structure which uses O(|T |) space and can search in O(|P ) time.

• Grossi and Vitter [GV00] give a structure using (1
ε +O(1))|T | lg |Σ| bits of space and O( |P |

lg|Σ| |T |+

lgε
|Σ| |T | · |output|) query time.

• Ferragina and Manzini [FM00] give an “opportunistic data structure” using O(Hk(T )|T | +
|T |

lg |T | |Σ| lg |Σ|) + o(|T |) bits of space and O(|P | + lgε |T | · |output|) query time. Here Hk is
kth-order entropy, the optimal compression rate using a sliding windows of size k. This result
holds for any constant k.

• Sadakane [Sad03] gives the best known result for large alphabets: O(H0(T )|T |+ |Σ| lg |Σ|) +
o(|T |) bits and O(|P | lg |T |+ lgε |T | · |output|) query time.

• For low-space construction, Hon, Sadakane, and Sung [HSS03] show a suffix tree construc-
tion using O(|T | lg |Σ|) working space and O(|T | lgε |T |) time. An earlier result by Hon and
Sadakane [HS02] gives array-like behavior.
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