
6.897: Advanced Data Structures Spring 2005

Lecture 17 — April 7, 2005

Lecturer: Mihai Pǎtraşcu Scribe: Tim Abbott

1 Overview

In the last lecture we saw how to solve marked ancestor using O(log n
log log n) time for queries, and

O(log log n) time for updates. Today we give an essentially tight lower bound for the existential
marked ancestor problem in the cell probe model, due to Alstrup, Husfeldt and Rauhe [1]. Ex-
istential marked ancestor queries require an answer as to whether or not the node has a marked
ancestor; the updates of marking or unmarking a node are the same as before. Thus, existential
queries are easier that the ones we considered before. Recall that in the cell probe model, the
cost being bounded is the number of cell probes to Θ(log n)-bit cells. The argument we use is an
interesting refinement of the Chronogram Technique, introduced by Fredman and Saks in [2].

2 A Lower Bound for Counting Ancestors

Recall that a data structure for the marked ancestor problem supports two types of operations on
a static tree. One is an update, where we either set or unset the mark bit of a given node. The
query on the data structure varies with the version, but in general we are given a leaf and asked to
compute some property of the marked ancestors of that leaf (whether they exist, how many of them
there are, the lowest one etc). We first consider the problem of counting the number of marked
ancestors, modulo 2. It is much easier to obtain a lower bound for the counting problem than for
the existential problem, and we use this opportunity to introduce the general technique.

Theorem 1. Let tu be the update time, and tq be the query time. For a perfect tree of branching
factor B ≥ tu log2 n, we have the tradeoff

tq = Ω(logB n) = Ω
(

log n

log tu + log log n

)

Note that for any tu = lgO(1) n, we have that tq = Ω(log n
log log n). Thus, our bound from last lecture

was tight. Note also that the lower bound is linear in the height of the tree considered, so we are
proving that simply scanning the root-to-leaf path is optimal for the complete tree. We will show
the bound in the worst case; it also holds in the amortized case. Finally, observe that the theorem
extends easily to binary trees, because we can embed our tree in a binary tree (ignore all levels
nondivisible by lg B).

2.1 A Hard Sequence of Operations

We first describe the hard sequence of operations on the data structure. The first thing we do is
iterate through all the nodes of the tree, and at each node with probability 1

2 set the mark bit to

1

one (otherwise set it to 0). We do this from the bottom of the tree upwards (so that all the nodes
on a given level are visited before any nodes on higher levels). The result is that the list of n values
of the mark bits is a uniformly random vector in {0, 1}n. Then, after all of those updates, query a
random leaf.

Intuitively, an update wants to inform the leaves in its subtree about the node’s bit (because queries
come at the leaves). At the very least, it could try to inform its children about the bit, so that
a query could ignore this node. However, we set B to be larger than tu, so intutively, whatever
propagation an update does, it is only useful with negligible probability. To solidify this intuition,
note that it is easy to handle the case when we scan and update nodes beginning with higher levels.
When updating a node, it can just obtain a partial count from the root to its parent (because
updates from higher levels happened before), and calculate a partial count for itself. Then all
operations take constant time.

2.2 Proof of the Lower Bound

Define epoch j to be the time during which the updates on level j were being executed. Thus, in
epoch 0 the root was updated, and in epoch 1 the B elements at the second level were updated;
and in general in epoch j, Bj updates were executed. Note that the epochs occured temporally in
order of decreasing j.

Our strategy is to show that the query algorithm must read in expectation Ω(1) cells written during
each epoch. In total over the logB n epochs, we achieve the desired lower bound in expectation.
This implies that it must hold in the worst case as well. The only variability that occurs here is in
the state of each node, and the identity of the random leaf. Thus, the problem is determined by
u ∈ {0, 1}n, the state of all the nodes in the tree, along with the value of the random query element
q. We then wish to show that for the random u we’ve constructed, and random q, the problem is
hard.

Fix a level j. During epoch j, there was a chunk of Bj updates. After those updates were
completed, there were a series of smaller epochs, exponentially decreasing in size. Suppose that our
query algorithm reads none of the cells written in epoch j. It can read any cells from other epochs;
we will give it all cells from all other epochs for free. We argue that with constant probability, the
algorithm does not have enough information to determine the correct answer. The cells that were
written in an epoch k > j cannot be useful, since they know nothing about the state of level j
(which was updated in the future). The total number of cells written in epochs k < j is at most

tu(1 + B + B2 + · · ·+ Bj−1) =
Bj − 1
B − 1

tu = tu ·O(Bj−1)

Since each cell has Θ(log n) bits, this are a total of O(tuBj−1 log n) bits of information that were
written in these epochs. Now, the total amount of information revealed by the updates in epoch
j is Bj bits, the information in the state of the nodes of level j. Thus the information the query
algorithm possesses is only O(Bj/ log n) = o(Bj), by the value we set of B; it follows that at least
a constant proportion of the mark bits at nodes in level j cannot be known by the query algorithm.

Now, we need to be able to compute the number of marked nodes on the path from our random
query element to the root. Thus, we must know the value of a random node at level j (since the
level-j ancestor of a random node is random). Thus, with at least a constant probability, the query
algorithm must read some cell from epoch j.

2

We know sketch how to formalize this proof idea, though we do not delve into the real combinatorial
analysis. Let Rj be the set of cells written during epoch j, and R<j =

⋃
i<j Ri. We think of Rj as

including pairs of cell address and cell contents.

Now consider the strings of update values which differ from u only on the j-th level nodes, and are
indistinguishable from u by looking at more recent epochs. That is, we define the equivalence class:

[uj] = {w ∈ {0, 1}n | u, w differ only on level j, R<j(u) = R<j(w)}

Observe that Rk(u) = Rk(w), (∀)k > j, because these epochs occured in the past, and the first
difference between u and w happened on level j. Thus, u and w can only be distinguished by
looking at Rj .

Now the proof proceeds as follows:

• as shown above, |R<j(u)| = tu ·O(Bj−1).

• there are 2Bj
choices of w which differ from u only on the j-th level.

• by fixing R<j(w) = R<j(u), we are eliminating a fraction of about 2−O(tuBj−1 lg n) from the
choices of w, for an average u. So |[uj]| ≥ 2Ω(Bj), with constant probability over a random u.

• if |[uj]| is large, it must mean that for a constant fraction of the nodes t on the j-th level,
(∃)w ∈ [uj] : wt 6= ut. Call these “bad t’s”.

• picking a random leaf induces a random t. With constant probability, this is a bad t. The
query must distinguish between u and w (because they yield different answers to the counting
problem), but they are indistinguishable except by looking at Rj .

3 Nondeterminism

Looking over the argument we just used, our proof still works even if the query is allowed to be
nondeterminstic in the complexity theoretic sense. One way to view nondeterminism is to imagine
a prover with perfect information, which is revealing a minimum number of cells to convince you of
the answer to the query. With constant probability, the prover still needs to show us at least one
cell written during epoch j, for each j. This is because any (even all) cells from the other epochs
are not enough to determine the answer, as we argued above.

This realization is bad news, since it means the proof technique cannot apply directly to the
existential problem. In the nondeterminstic setting, the prover can simply demonstrate the value
of a marked bit in the chain, and use only one cell to answer the query. The hardness in this
case comes from co-nondeterministic complexity: to prove that there are no marked ancestors, the
prover must be able to show that the mark bits at each node on the path from leaf to root are
all false. Before we use this hardness intuition for a tight lower bound in the existential case, we
first show how the power of nondeterminism can be used to our advantage, to reduce the counting
problem to the existential one. This proves a weaker lower bound, but in a very surprising way.

Theorem 2. The existential marked ancestor problem requires Ω(
√

log n) time per operation.

3

Proof. Assume we have tu = tq = o(
√

log n). We construct a nondeterministic algorithm for the
marked ancestor counting problem. Remember that we showed this problem has tq = Ω(logB n),
for any B ≥ tu lg2 n. We use as our static input tree a balanced tree of branching factor B = 2

√
log n.

Now, the height of such a tree is h = logB n = log n/
√

log n =
√

log n. Build 2h copies of the tree,
each using the assumed existential marked ancestor algorithm. Each copy corresponds to a subset
S of the levels. For the tree associated to subset S, we flip all the mark bits at the levels in S.
On an update request, we use O(2htu) = o(22

√
log n) time to update all of the trees. On a query

for the number of marked nodes above a leaf, we can nondeterministically guess the set of marked
ancestors T , and then prove that the guess is correct. This can be done by an existential query in
the tree with the levels in T flipped. This query will return false iff the ancestors on the levels T
are exactly those marked in the original tree. Thus the query time here is O(tq) = o(

√
log n). Now,

we arrive at a contradiction by comparing with our lower bound from before:

tq = Ω
(

log n√
log n + log log n

)
= Ω(

√
log n)

4 A Tight Bound for Existential Queries

Theorem 3. Given a perfect tree with branching factor B ≥ tu log4 n, then tq = Ω(logB n), for
existential marked ancestor queries.

Proof. For some u ∈ {0, 1}n, we use the same sequence of updates as before, updating by levels
starting from the bottom. However, instead of using a uniform distribution on the space of possible
u’s, we choose that ui = 1 with probability p = 1

log n , and ui = 0 otherwise. This implies that
the expected number of total marked ancestors above a given leaf is 1

log n logB n = 1
log B = o(1).

Then with probability 1 − o(1) the path is empty, which, as we commented before, is difficult to
demonstrate.

We’re going to make a similar epoch argument as before. However, we cannot show that the
algorithm needs to access a cell from each Rj , for reasons that will be explained below. Instead,
we will need to construct sets Rj ⊇ Rj , and we will show that the query needs a cell from each Rj .
The intuition behind these supersets will be seen later, but think of them as slightly larger than
Rj . We will construct them iteratively, as follows. Consider

[uj] = {w ∈ {0, 1}n | u, w only differ on the j-th level, and R<j(u) = R<j(w)}

Notice that [uj] is an equivalence class, much similar to the equivalence classes considered in the
previous proof. Later, we will argue that |[uj]| is large enough, so that for Ω(Bj) choices of nodes t
on the j-th level, (∃)w ∈ [uj] with wt 6= ut. Thus, for many t’s, we cannot answer the query based
on R<j .

Define a fooling set Fj(u) ⊆ [uj] such that the property described in the last paragraph is true: for
Ω(Bj) choices of t, (∃)w ∈ Fj(u) : wt 6= ut. Before, we argued that a big [uj] represents a fooling
set. A crucial insight is that even very small subsets of [uj] can still be fooling sets. More precisely,
one can show that there exists Fj(u) ⊂ [uj], with |Fj(u)| = O(lg n), having the fooling property.
We only discuss the intuition behind the existence of small fooling sets. Because |[uj]| is almost as

4

large as possible, a random set from it will differ from u in a fraction of Ω(p) of the places (and
these will be somewhat random). If one chooses O(1)

p random sets from [uj], we will find sets which
differ from u in a constant fraction of the possible places.

Now we are finally ready to define Rj based on Ri, i < j:

Rj(u) =

 ⋃
w∈Fj(u)∪{u}

Rj(w)

 \R<j(u)

An important property of this construction is that Rj(u) is disjoint from Rk(u) unless j = k. This
follows from explicit exclusion of R<j from Rj .

The key property of the construction is that if w ∈ Fj(u), then only cells in Rj(u) differ between
executing the algorithm with u and with w. This is similar to the property we required in the old
proof, forcing the query to read a cell from Rj to distinguish the update sequence u from some
other plausible update sequence w.

To prove this key property, we analyze the possible classes of cells that could be used to distinguish
an execution with input u and one with input w ∈ Fj(u), assuming that we do not read any cell
from Rj(u).

1. A cell in Ri(u), for i < j. By the definition of [uj], these are the same for u and w, so these
cells cannot be useful in distinguishing u and w.

2. A cell in

Rj(w) =

 ⋃
v∈Fj(w)∪{w}

Rj(v)

 \R<j(w)

Now, by the defintion of [uj], R<j(w) = R<j(u). Furthermore, [uj] = [wj] by transitivity of
equivalence. The fooling set is a function only of the equivalence class, so Fj(u) = Fj(w).
But w ∈ Fj(u), so w ∈ Fj(w), so the union in the definition of Rj(u) includes all terms from
the union in Rj(w). Thus, Rj(u) ⊇ Rj(w), and we have already excluded from consideration
cells in Rj(u).

3. A cell in Ri(u), for i > j. Supposed that this cell is in Rm(w). We have just shown that
m 6= j, and further that m is not less than j (the first two cases), hence m > j. Thus, the
cell must have been written before epoch j for both u and w. However, since u and w only
differ on the j-th level, the values in this cell for the two instances must be equal.

Thus, if the query needs to distinguish between u and some w ∈ Fj(u), it must read some element
of Rj(u). Since picking a random leaf corresponds on the j-th level to picking a random node, and
there exists a fooling w for a constant fraction of the nodes on the j-th level, this implies that we
must read a cell in Rj(u) with probability Ω(1). The lower bound follows.

The only loose end is why Rj(u) really is small (implying that [uj] is large, which we assumed at
the beginning). The idea is the Rj(u) includes cells written during a few alternative computation
histories (namely, the ones in Fj(u) and u itself). Because we could find very small fooling sets,
this is just O(lg n) times more cells than Rj .

5

Now we can explain why we needed to introduce the Rj ’s. Consider some w, an alternative to u
on the j-th level. It is possible that u might write some cell in epoch j + 3, say, that w also writes.
But w might rewrite the same cell in epoch j. The problem here is that Rj does not contain this
overwritten cell (u doesn’t rewrite the cell, only w does). The query algorithm could detect that
the write occured by attempting to read the value written in epoch j + 3. Using the larger sets
Rj(u) avoids this complication: we are including cells written not only by u, but also by some
alternatives to u. Since the fooling sets are small, using these these larger sets Rj is not expensive,
so that we can still obtain the tight bound.

References

[1] Stephen Alstrup, Thore Husfeldt, Theis Rauhe: Marked Ancestor Problems, Proc. 39th Annual
Symposium on Foundations of Computer Science (FOCS), p.534, 1998.

[2] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures,
Proc. 21st ACM Symposium on Theory of Computing (STOC), p. 345-354, 1989.

6

