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1 Overview

In the last lecture, we discussed algorithms for integer sorting. In this lecture we will discuss the
relationship between integer sorting algorithms and priority queue data structures. It is obvious
that fast priority queues imply fast sorting, since if a priority queue can do Insert and Delete-
min in O(f(n)), then we can sort in O(nf(n)) by inserting all elements into the queue then calling
Delete-min n times. So, we will focus in this lecture on the reverse — that is, how to make fast
priority queues once we have fast sorting algorithms.

2 Priority Queue

A priority queue, also sometimes called a heap, is a data structure that performs the following
operations:

• Insert(x, key) – Insert the element x into the heap with key key.

• Delete-Min() – Return the smallest element in the heap under key order. Also, delete this
element from the heap.

• Decrease-Key(x, key) – Change the key of item x in the heap to key. key must not be
greater than x’s current key value.

• Meld(H1,H2) – Takes two heaps as input and produces a new heap that contains all the
elements of the two that are input.

The fundamental operations are Insert and Delete-Min. The other two operations are motivated
by applications to graph algorithms.

Two old but very important algorithms in computer science that require heaps are Dijkstra’s
shortest path algorithm in [1], and Prim’s algorithm for minimum spanning tree, discussed in [2].
Note one difference in the types of priority queues needed in the two algorithms: in Dijkstra’s
algorithm the minimum key in the heap never decreases. We call heaps that only support such
situations monotone. If we remember the way Dijkstra’s algorithms and Prim’s algorithm work,
each of them performs O(m) decrease-key operations, and O(n) Insert’s and Delete’s. This
motivates the need for Decrease-Key being faster than Delete-Min.

Another old algorithm that uses the priority queue is Edmonds’ algorithm for directed MST [3].
This can be implemented efficiently using meldable priority queues.
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2.1 Results

For the following results, you can assume that a fast Meld is not supported unless otherwise stated.
In the comparison model, a normal binary heap can achieve O(log n) per operation. Fibonacci
heaps, introduced in [4], achieve O(1) Decrease-Key and Insert and O(log n) Delete-Min (all
times amortized). Note, this implies an O(n log n + m) running time for Prim’s and Dijkstra’s
algorithms. A worst-case version of the Fibonacci heap, which also achieves O(1) inserts, was
shown in [5].

For integer priority queues, the atomic heap was introduced in [6], which achieves O(1) amortized
time per operation for O(polylogn) elements. From a high-level point of view, the atomic heap
works much like a fusion tree (and thus even supports predecessor and successor queries). The
paper discusses how to use this heap for an optimal O(n + m) MST algorithm (note that this is
not through direct implementation of any classic algorithm). The only linear time algorithm for
MST known in the comparison model is randomized, found in [7]. The best deterministic MST
algorithm, due to [8], runs in time O((n + m)α(n)).

As far as relating sorting to priority queues, it was shown in [10] that O(n · S(n, w)) sorting
implies an O(S(n, w)) amortized per operation monotone priority queue. This result was later
improved to worst-case and without the monotonicity condition in [11]. Work has also been done
in showing how to use a fast priority queue to get a fast meldable priority queue. It is shown
in [13] that an O(P (n, w)) time per operation priority queue implies an O(P (n, w)α(n)) time per
operation meldable priority queue. The α(n) was essentially removed (disappears for the P (n, w)
we currently know and care about) in [14].

The best known priority queue with constant Decrease-Key does not match the current sorting
bound. Rather, it achieves O(lg lg n) per Delete-Min [12]. Beside MST, another important
application of such queues was solved through different techniques: single-source shortest paths
were shown to be computable in linear time, O(m + n), in [9]. However, this is only for the
undirected case, and the directed version still relies of priority queues with constant Decrease-
Key.

The rest of this lecture discusses what appears to be a simpler way to convert O(n ·S(n, w)) sorting
to priority queues with operations supported in O(S(n, w)) time. This is an ad-hoc creation of
your teachning staff and has not been checked extensively, so it should be trusted accordingly.

2.1.1 The Priority Queue

We will keep Θ(lg n) buckets, B0, B1, .... Each Bi will either be:

• Empty

• Sorted and of size at most 2i, stored in a linked list (we will charge to pay for the sort).

• Semi-structured:

- Unstructured part Ui of arbitrary size, stored in a linked list (we will be able to charge
the elements of Ui).
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- Structured part Si split into Ω(2i/2) groups of size Θ(2i/2) each. Each group is unsorted,
but the groups are in order. In our charging argument, we will charge for the groups
beyond Θ(2i/2).

We will always keep B0 semi-structured. For semi-structured buckets Bi, Bj , if i < j then all
elements of Bi will be less than all elements of Bj . For sorted Bi, we will maintain the invariant
that min(Bi−1) <max(Bi) <min(Bi+1).

We will keep an atomic heap on min(Bi) for all non-empty Bi to find which bucket contains the
element with minimum key. Recall that atomic heaps have O(1) time per operation on O(polylogn)
elements, and here there are Θ(log n) buckets. Decrease-Key will remove from the element from
the existing bucket then call Insert again.

For Delete-Min:

- Find the lowest non-empty bucket Bi.

- if Bi is sorted, simply extract its minimum from the linked list.

- if Bi is semi-structured:

- if |Bi| = O(2i), then sort everything and turn it into a sorted bucket.

- if |Bi| = ω(2i), then we do an “exponential blastoff”

- for j = i, i + 1, ...

- Put elements of Bj into a bag.
- Drop the smallest Θ(2j) elements from the bag into Bj (we figure out which are

smallest by going through the elements a first time and doing recursive medians
on the set).

- Stop when the bag is empty.

Note that the recursive medians on the set above runs in linear time. This is because the sizes
of the Bj increase as a geometric series. So, our time for the recursive medians is the sum of a
geometric series multiplied by O(n), which is just O(n). It was shown in [15] that structured parts
can be built from unstructured parts in O(2i) time. Also, we can split and merge structured parts
in O(2i/2) time.
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