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1 Overview

The sorting problem, in which we wish to sort n elements according to a given ordering, has a tight
O(n lg n) bound in the comparison model. In the integer sorting problem, we consider elements
which are w-bit integers. By making this assumption and working in the word RAM model, several
improved results have been found for sorting:

• Counting sort: O(n + u) = O(n + 2w)

• Radix sort: O(n · w
lg n)

• van Emde Boas: O(n lgw). For w = lgO(1) n, this is O(n lg lg n).

• Andersson, Hagerup, Nilsson, and Raman [2]: O(n) for w = Ω(lg2+ε n). Combined with the
previous result for small w, this gives sorting in O(n lg lg n) time.

• Kirkpatrick and Reisch [7]: O(n lg w
lg n). This is o(n lg lg n) for w = lg1+o(1) n. You are asked

to prove this result in problem 7.

• Han [5]: O(n lg lg n) deterministic and on the AC0 RAM

• Han and Thorup [6]: O(n
√
lg lg n) randomized. Actually, one can achieve O(n

√
lg w

lg n),

improving the result of [7].

We will prove the result in [2]. Combining this result with van Emde Boas gives an O(n lg lg n)
upper bound for all values of w. It is also worth noting that the hardness of integer sorting is
concentrated in a narrow interval for w, between lg1+ε n and lg2 n. At the ends of the interval,
there is a relatively quick fall-off in the running time until it becomes linear.

2 Signature Sort

The signature sort in [2] allows us to sort in O(n) time for w ≥ (lg2+ε n) lg lg n = lg2+ε′ n. We
break each integer into lgε n equal-sized chunks, encoding each of these chunks in O(lg n) bits with
a universal hash function. The result will be n signatures with b = O(lg1+ε n) bits each. The hash
codes for different chunks will be different with high probability.

The general strategy of the algorithm is as follows:
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• sort the signatures in linear time. This is possible because they are significantly smaller than
a word. We develop packed sorting, which takes O(n) time to sort n integers of b bits each,
given a word size of w = Ω(b lg n lg lg n).

• build a compressed trie over the signatures. This can also be done in linear time.

• recursively sort the original letters (not the hash codes) of the compressed trie. We are
recursing on O(n) letters, which have lgε n times fewer bits than the original. After O(1

ε )
levels of recursion, we can used packed sorting to solve the problem in linear time.

• find the order of the original integers based on the order of the letters of the compressed trie.

We defer packed sorting to Section 3, since it is the most technical component of the algorithm.
In Section 2.1, we describe how to build the compressed trie based on the list of sorted signatures.
In Section 2.2, we describe how to reconstruct the original sorted order, based on the order of the
letters and the compressed trie.

2.1 Constructing a Compressed Trie

We would like to build a tree out of these signatures in a manner similar to van Emde Boas. Each
edge represents a chunk value, so the tree has height lgε n, and the n integers corresponding to
the signatures are stored in the leaves. Such a simple trie has O(n lgε n) complexity (used edges),
so we cannot build it in linear time. Instead, we will only keep track of branching nodes, and we
compress nonbranching paths; see Figure 1. This is called a compressed trie; because there are n
leaves, it has at most n − 1 internal nodes and 2n − 2 edges. To navigate the compressed trie, we
store for each node its effective depth in the fully expanded trie, and store the value of the first
chunk along each compressed edge.

To build this tree in O(n) time, we use an idea similar to the Cartesian tree construction algorithm
of Gabow, Bentley and Tarjan [4]. We do not describe the Cartesian tree here, but reformulate the
algorithm in the context of our problem.

We build the compressed trie by inserting signatures in sorted order. We insert the first signature
as a single edge below the root. To insert signature i + 1, we take its XOR with signature i and
find the most significant set bit in the result. Starting from signature i in the tree, we walk upward
until we are at the appropriate branching node, which may require breaking an edge to create this
node; refer to Figure 2. We then insert a new edge containing the differing suffix of signature i+1.
The length of the walk to the branching node will be within 1 of the decrease in the length of the
rightmost path in the tree. On the other hand, inserting a suffix can only increase the rightmost
path by one. Thus, we can charge the length of the walk minus 1 to the decrease in the length of
the rightmost path, and we obtain a total time bound of O(n).

2.2 Reordering Children

We must now recover the sorted integers based on the trie of signatures. Because we applied a
hash function to each chunk, integers with common prefixes will also have signatures with common
prefixes. Thus, we only need to reorder the children of each node by the order of the original letters.
Then, an inorder traversal of the tree gives the integers in sorted order.
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Figure 1: (a) A tree of signatures. Each edge represents the hash value of a chunk, and the
leaves are possible signature values. (b) A compressed tree of signatures. Non-branching nodes are
discarded, as are chunk values which leave non-branching nodes.
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Figure 2: Inserting a new signature X. (a) If there is already a branching node at the longest
common prefix of X and its predecessor, X is simply added as one of its children. (b) A new node
is added along an edge if a branching node does not exist at the correct position.
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Figure 3: Packing b-bit integers into a w-bit word.

There are 2n−2 = O(n) edges in the tree, each with a chunk of w
lgε n bits. We attach to each chunk

O(lg n) bits of auxiliary data: the index of the parent node, and the index representing the edge
itself. This small auxiliary data can be carried around without difficulty (e.g. it can be appended to
the chunk, and considered a part of the number). We can now recursively sort these O(n) chunks.
We bottom out our recursion when the chunks contain O( w

lg n lg lg n) bits because packed sorting will
apply. This will take 1

ε+1 recursions, which keeps our total bound at O(n) because ε is independent
of n.

We now use a stable radix sort to sort the chunks by their node index, causing all of the information
about a node’s children to be contiguous in the list of chunks. A simple scan of the node and edge
indices will now allow us to reorder the children of each node by chunk value in O(n) time. An
inorder traversal of the resulting tree will give us the ordering of the leaves.

3 Packed Sorting

Packed sorting, due to Albers and Hagerup [1], can sort n integers of b bits in O(n) time, given
a word size of w ≥ 2(b + 1) lg n lg lg n. We can therefore pack lg n lg lg n elements into one word
in memory. We leave one zero bit between each integer, and w/2 zero bits in the high half of the
word; see Figure 3.

We use an adapted version of mergesort to sort the elements. We have four main operations that
allow us to do this:

1. Merge a pair of sorted words with k ≤ lg n lg lg n elements into one sorted word with 2k
elements. In Section 3.1, we show how to do this in O(lg k) time.

2. Merge sort k ≤ lg n lg lg n elements, yielding a packed word with elements in order. Using (1)
for the merge operation, this takes time T (k) = 2T (k

2 ) + O(lg k). Using the master theorem
or drawing the recursion tree shows the leaves dominate the running time, so T (k) = O(k).

3. Merge two sorted lists of r words, each word containing k = lg n lg lg n sorted elements, into
one sorted list of 2r sorted words. We do this by removing the first word of each list and
merging them using (1). The first half of the resulting word can be output, since its k elements
are necessarily the smallest of all those remaining. We then mask the second half of the word,
which contains the larger k elements. This word is placed at the beginning of the list which
formerly contained the maximum element in the word, maintaining the sortedness of the lists.
We take O(lg k) time to output a word, so the merge operation takes total time O(r lg k).

4. Merge sort with (3) as the merge operation and (2) as the base case, yielding a recurrence of
T (n) = 2T (n

2 ) + O(n
k lg k), where k = lg n lg lg n. There are lg n

k = O(lg n) internal levels in
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Figure 4: (a) A bitonic sequence. (b) A cyclic shift of (a) is also a bitonic sequence.
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Figure 5: (a) The first recursion in reversing a list. (b) Next, the two halves are each divided into
left and right halves which are swapped and recursively sorted.

the recursion tree, each taking total time O(n
k lg k) = O( n

lg n . So internal levels contribute a
cost of O(n). The n

k leaves each take O(k) time, so the total cost of the leaves is also O(n).

3.1 Merging Words

We use bitonic sorting networks and bit tricks to merge two words together. A bitonic sequence
is one for which a cyclic shift will result in a sequence which increases monotonically and then
decreases monotonically; see Figure 4. A bitonic sequence can be sorted by putting all pairs A[i]
and A[i+ n

2 ] in the correct order for i = 1, 2, . . . , n
2 , and then recursively sorting the first and second

halves of the data. Each step uses n
2 comparisons and potential swaps, and the recursion has depth

O(lg n). A proof of correctness can be found in [3, Chapter 27].

We can use a bitonic sort to merge two words of k elements. We first reverse the second word
and then concatenate the two words, leaving a bitonic sequence. Reversing a word can be done by
masking out the leftmost k

2 elements and shifting them right by k
2 b, and similarly masking out the

rightmost k
2 elements and shifting them left by k

2b. Taking the OR of the two resulting words will
give a word with the left and right halves of the original word swapped. We now recursely reverse
the left and right halves of the word in parallel, so that each level of recursion takes O(1) time.
After lg k recursions we reach the base case where there is only one element to be reversed, so the
total time to reverse a word of k elements is O(lg k). The two words may now be concatenated by
shifting the first word left by kb and taking its OR with the second word. See Figure 5.

All that remains is to run the bitonic sorting algorithm on the elements in our new word. To do
so, we must divide the elements in two halves and swap corresponding pairs of elements which are
out of order. Then we can recurse on the first and second halves in parallel, performing lg k total
recursions. Thus we need a constant-time operation which will perform the desired swapping.

Recall that we left an extra 0 bit before each element when we packed them into a word. We will
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Figure 6: Sorting pairs of corresponding elements in the left and right halves of a word. Extra bits
are set in the left half, the right half of the word is shifted and subtracted, and a mask is created
from the result. The large elements are then masked out of both halves using this mask and its
negation. In a similar process, the small elements are found, and the two are finally appended
together.

mask the left half of the elements and set this extra bit to 1 for each element, then mask the right
half of the elements and shift them left by k

2b. If we subtract the second word from the first, a 1
will appear in the extra bit if and only if the element in the corresponding position of the left half
is greater than the element in the right half. Thus we can mask the extra bits, shift the word right
by b− 1 bits, and subtract it from itself, resulting in a word which will mask all the elements of the
right half which belong in the left half and vice versa. Similarly, negating this word will mask all
elements which belong in their current position. Simple shifts and OR operations will then produce
the desired result, a word containing 2k sorted elements. See Figure 6.

We therefore have a constant-time operation which performs the desired operation from bitonic
sorting. Recursively sorting both halves in parallel will yield lg k levels of recursion, leading to the
O(lg k) time for operation (1). Packed sorting in O(n) time immediately follows, as does our O(n)
time result for w = Ω(lg2+ε n).
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