
6.897: Advanced Data Structures Spring 2005

Lecture 5 — Feb 15, 2005

Prof. Erik Demaine Scribe: Igor Ganichev

1 Overview

In the last lecture we worked in a BST model. We discussed Wilber lower bounds for BSTs for
a particular access sequence, and developed Tango trees which achieve O(lg lg n)-compatitiveness.
This is a very promising result that gives hope for existence of a dynamically optimal tree.

In this lecture we discuss dynamic trees that have many applications such as to Network Flow
and Dynamic Connectivity problems in addition to them being interesting theoretically. We will
discuss one data structure called Link-Cut trees that achieves logarithmic amortized time for all
operations.

2 Dynamic Trees

The dynamic tree problem we will discuss today is to represent a forest of rooted trees whose each
node has an unordered set of children of arbitrary size. The data structure has to support the
following operations:

• MAKE TREE() – Returns a new vertex in a singleton tree. This operation allows us to add
elements and later manipulate them.

• CUT(v) – Deletes the edge between vertex v and its parent, parent(v).

• JOIN(v,w) – Makes vertex v a new child of vertex w, i.e. adds an edge (v,w). In order for
the representation to remain valid this operation assumes that v is the root of its tree and
that v and w are nodes of distinct trees.

• FIND ROOT(v) – Returns the root of the tree that vertex v is a node of.

It is also possible to augment the data structure to return statistics about the path from the v to
the root of its tree, such as the sum or minimum of the weights of each edge. This augmentation
is necessary in flow algorithms.

3 Link-Cut Trees

Link-Cut Trees were developed by Sleator and Tarjan [1]. They achieve logarithmic amortized cost
per operation for all operations. Link-Cut Trees are similar to Tango trees in that they use the
notions of preferred child and preferred path. The also use splay trees for the internal representation.

1



3.1 Definition of Link-Cut Trees

We say a vertex has been accessed if was passed to any of the operations from above as an argument.
We call represented trees the abstract trees that the data structure represents.

The preferred child of node v is equal to its i-th child if the last access within v’s subtree was in
the i-th subtree and it is equal to null if the last access within v’s subtree was to v itself or if there
were no accesses to v’s subtree at all. A preferred edge is an edge between a preferred child and its
parent. A preferred path is a maximal continuous path of preferred edges in a tree, or a single
node if there is no preferred edges incident on it. Thus every node is in exactly one preferred path.

Link-Cut Trees represent each tree T in the forest as a tree of auxiliary trees, one auxiliary tree for
each preferred path in T . Auxiliary trees are splay trees with each node keyed by its depth in its
represented tree. Thus for each node v in its auxiliary tree all the elements in its left subtree are
higher(closer to the root) than v in v’s represented tree and all the elements in its right subtree
are lower. Auxiliary trees are joined together using path-parent pointers. There is one path-parent
pointer per auxiliary tree and it is stored in the root. It points to the node that is the parent(in
the represented tree) of the topmost node in the preferred path associated with the auxiliary tree.
Including the path-parent pointers as edges, we have a representation of a represented tree as a
tree of auxiliary trees.

3.2 Operations on Link-Cut Trees

3.2.1 Access

All operations above are implemented using an ACCESS(v) subroutine. It restructures the tree T
of auxiliary trees that contains vertex v so that it looks like v was just accessed in its represented
tree R. When we access a vertex v some of the preferred paths change. A preferred path from the
root of R down to v is formed. When this preferred path is formed every edge on the path becomes
preferred and all the old preferred edges in R that had an endpoint on this path are destroyed, and
replaced by path-parent pointers.

Remember that the nodes in auxiliary trees are keyed by their depth in R. Thus nodes to the left of
v are higher than v and nodes to the right are lower. Since we access v, its prefered child becomes
null. Thus, if before the access v was in the middle of a preferred path, after the access the lower
part of this path becomes a separate path. What does it mean for v’s auxiliary tree? This means
that we have to separate all the nodes less than v in a separate auxiliary tree. The easiest way to
do this is to splay on v, i.e. bring it to the root and then disconnect it right subtree, making it a
separate auxiliary tree.

After dealing with v’s descendants, we have to make a preferred path from v up to the root of
R. This is where path-parent pointer will be usefull in guiding us up from one auxiliary tree to
another. After splaying, v is the root and hence has a path-parent pointer (unless it is the root of
T ) to its parent in R, call it w. We need to connect v’s preferred path with the w’s preferred path.
In other words, we need to set w’s preferred child to v. This is a two stage process in the auxiliary
tree world. First, we have to disconnect the lower part of w’s preferred path the same way we did
for v (splay on w and disconnect its right subtree). Second we have to connect v’s auxiliray tree
to w’s. Since all nodes in v’s auxiliary tree are lower than any node in w’s, all we have to do is to

2



Represented 
Tree before 
Access to N 

A

B

M

D E F G

H

J

L

C

K

I

O

N

A

B

M

D E F G

H

J

L

C

K

I

O

N

Preferred edge 

Normal edge 

Access to 
node N 

Preferred Path 

Auxiliary tree representation of 
represented tree before access to node N

B

A E

D F

J

G

C H

I

K

N

L O

M

Auxiliary trees

Path-parent pointer 

Path-parent pointers

Auxiliary trees are splay trees 
and are keyed by the depth in 

the represented tree. 

Figure 1: Structure of Link-Cut Trees and Illustration of Access Operation 

3



ACCESS(v)

– Splay v within its auxiliary tree, i.e. bring it to the root. The left subtree will contain all the
elements higher than v and right subtree will contain all the elements lower than v

– Remove v’s preferred child.

– path-parent(right(v)) ← v

– right(v) ← null

– loop until we reach the root

– w ← path-parent(w)

– splay w

– switch w’s preferred child

– path-parent(right(w)) ← w

– right(w) ← v

– path-parent(v) ← null

– v ← w

– splay v just for convinience

make v auxiliary tree the right subtree of w. Finally, we have to do minor housekeeping to finish
one iteration: since v is no longer the root of its auxiliary tree, we nullify its path-parent pointer.
We continue building up the preferred path in the same way, until we reach the root of R.

3.2.2 Find Root

FIND ROOT operation is very simple to implement after we know how to handle accesses. First,
to find the root of v’s represented tree, we access v thus make it on the same auxiliary tree as the
root of the represented tree. Since the root of the represented tree is the highest node, its key in
the auxiliary tree is the lowest. Therefore, we go left from v as much as we can. When we stop, we
have found the root. We splay on it and return it.

FIND ROOT(v)

– access(v)

– Set v to the smallest element in the auxiliary tree, i.e. to the root of the represented tree

– v ← left(v) until left(v) is null

– splay v

– return v

4



3.2.3 Cut

To cut (v, parent(v) edge in the represented tree means that we have to separate nodes in v’s
subtree (in represented tree) from the tree of auxilary trees into a separate tree of auxiliary trees.
To do this we access v first, since it gathers all the nodes higher than v in v’s left subtree. Then,
all we need to do is to disconnect v’s left subtree (in auxiliary tree) from v. Note that v becomes
in an auxiliary tree all by itself, but path-parent pointer from v’s children (in represented tree) still
point to v and hence we have the tree of auxiliary trees with the elements we wanted.

CUT(v)

– access(v)

– left(v) ← null

3.2.4 Join

Joining two represented trees is also easy. All we need to do is to access both v and w so that they
are at the roots of their trees of auxiliary trees, and make latter left child of the former.

JOIN(v,w)

– access(v)

– access(w)

– left(v) ← w

4 Analysis

As one can see from the pseudocode, all operations are doing at most logarithmic work besides
calls access. Thus it is enough to bound the runtime of access. First we show an O(lg2 n) bound.

4.1 An O(lg2 n) bound.

From access’s pseudocode we see that its cost is the number of iterations of the loop times the cost
of splaying. We already know from previous lectures that the cost of splaying is O(lg n) amortized.
Furthermore, the loop iterates once per jump from one preferred path to the one above (pointed
to by path-parent pointer), or in other words, once per preferred child change. Thus to prove the
O(lg2 n) bound we need to show that the number of preferred child changes is O(lg n) amortized.
We accomplish this by using the Heavy-Light Decomposition.

4.1.1 The Heavy-Light Decomposition

The Heavy-Light decomposition is a general technique that works for any tree (not necessarily
binary). It calls each edge either heavy or light depending on the relative number of nodes in its
subtree.

5



Let size(v) be the number of nodes in v’s subtree.

Definition 1. An edge from vertex v is called heavy if size(v) > 1
2size(parent(v)), and otherwise

it is called light.

Furthermore, let light-depth(v) denote the number of light edges from vertex v to the root. Note
that light-depth(v) ≤ lg n because as we go down one light edge we decrease the number of nodes
in our current subtree at least a factor of 2. In addition, note that each node has at most one heavy
edge coming out of it because there can be at most one child whose subtree contains more than
half of the nodes of its parent’s subtree.

4.1.2 Proof of the O(lg2 n) bound

To bound the number of preferred child changes, we do Heavy-Light decomposition on represented
trees. For every change of preferred edge (possibly except for one change to the preferred edge
that comes out of the accessed node) there exists a newly created preferred edge. So, we count
the number of edges which change status to being preferred. Per operation, there are at most lgn
edges which are light and become preferred (because all edges that become preferred are on a path
starting from the root, and there can be at most lgn light edges on a path by the observation
above). Now, it remains to ask how many heavy edges become preferred. For any one operation,
this number can be arbitrarily large, but we can bound it to O(lg n) amortized. How come? Well,
during the entire execution the number of events “heavy edge becomes preferred” is bounded by
the number of events “heavy edge become unpreferred” plus n − 1 (because at the end, there can
be n−1 heavy preferred edges and at the beginning the might have been none). But when a heavy
edge becomes unpreferred, a light edge becomes preferred. We’ve already seen that there at most
lg n such events per operation in the worst-case. So there are ≤ lg n events “heavy edge becomes
unpreferred” per operation. So in an amortized sense, there are ≤ lg n events “heavy edge becomes
preferred” per operation (provided (n − 1)/m is small, i.e. there is a sufficiently large sequence of
operations).

4.2 An O(lg n) bound.

We prove the O(lg n) bound by showing that the cost of preferred child switch is actually O(1)
amortized. From access’s prseudocode one can easily see that its cost is

O(lg n) + (cost of pref child switch) ∗ (number of pref child switches)

From the above analysis we already know that the number of preferred child switches is O(lg n),
thus it is enough to show that the cost of preferred child switch is O(1). We do it using the potential
method.

Let s(v) be the number of nodes under v in the tree of auxiliary trees. Then we define the potential
function Φ =

∑
v lg s(v). Using the Access Theorem we get:

cost(splay(v)) ≤ 3(lg s(u)− lg s(v)) + 1,

6



where u is the root of v’s auxiliary tree. Now note that splaying v affects only values of s for nodes
in v’s auxiliary tree and changing v’s preferred child changes the structure of the auxiliry tree but
the tree of auxiliary trees remains unchanged. Therefore, values of s change only for nodes inside
v’s auxiliary tree after an access to v. Also note that if w is the parent of the root of auxiliary
tree containing v, then we have that s(v) ≤ s(u) ≤ s(w). Now we add equations above along the
preferred path from v to the root for every preferred child change made in the access. It telescopes
and is less than

3(lg s(root of represented tree)− lg s(v)) + O(number of preferred child changes)

which in turn is O(lg n) since s(root) = n. Thus the cost of access is O(lg n) amortized as desired.

To complete the analysis we resolve the worry that the potential might increase more than O(lg n)
after cutting or joining. Cutting breaks up the tree into two trees thus values of s only decrease
and thus Φ also decreases. When joining v and w, only the value of s at v increases as it becomes
the root of the tree of auxiliary trees. However, since s(v) ≤ n, the potential increases by at
most lg s(v) = lg n. Thus increase of potential is small and cost of cutting and joining is O(lg n)
amortized.

References

[1] D. D. Sleator, R. E. Tarjan, A Data Structure for Dynamic Trees, Journal. Comput. Syst. Sci.,
28(3):362-391, 1983.

7


