6.897: Advanced Data Structures Spring 2005

Lecture 4 — February 10, 2005
Prof. Erik Demaine Scribe: Mike Ebersol

1 Overview

In the last lecture we discussed Binary Search Trees and the many bounds which achieve o(lgn)
per operation for natural classes of access sequences. This motivates us to search for a BST which
is optimal (or close to optimal) on any sequence of operations.

In this lecture we discuss lower bounds which hold for any Binary Search Tree (the Wilber bounds).
Based on such a bound, we develop the Tango tree, which is an O(lglgn)-competitive BST struc-
ture. The Tango upper bound and the Wilber lower bounds represent the tighest bounds on the
offline optimal BST known to date.

2 Wilber Bounds

The two Wilber bounds are functions of the access sequence, and they are lower bounds for all
BST structures. They imply, for instance, that there exists a fized sequence of accesses which takes
Q(lgn) per operations for any BST.

2.1 Wilber’s 2nd Lower Bound

Let (x1, 22, ..., m) be the access sequence. For each access x; compute the following Wilber number.
We look at where z; fits among x;, 241, ..., z;—1 for all # counting backwards from j — 1 until the
previous access to x;. Now, we say that a; < x; < b;, where a; and b; are the tightest bounds on
x; discovered so far. Each time i is decremented, either a; increases or b; decreases (more tightly
fitting x;), or nothing happens (the access is uninteresting for x;). The Wilber number is the
number of alternations between «a; increasing and b; decreasing.

Wilber’s 2nd lower bound [Wil89] states that the sum of the Wilber numbers of all x;’s is a lower
bound on the total cost of the access sequence, for any BST. It should be noted that this only holds
in an amortized sense (for the total cost): the actual cost to access some x; may be lower than its
Wilber number on some BSTs. We ommit the proof; it is similar to the proof of Wilber’s 1st lower
bound, which is given below.

An interesting open problem is whether Wilber’s second lower bound is tight.

We now proceed to an interesting consequence of Wilber’s 2nd lower bound: key-independent
optimality. Consider a situation in which the keys are just unique identifiers, and, even though they
are comparable, the order relation is not particularly meaningful. Specifically, we will assume that
the order relation is just random. In other words, we are interested in E[OPT (b(x1), b(x2), ..., b(zy)],
where the expectation is taken over a uniformly random bijection b on the set of keys.



Key-independent optimality is defined as usual with respect to the optimal offline BST. Note that
the offline optimum knows the bijection (alternatively, we take the optimum for each bijection).

Theorem 1 (key independent optimality [Iac02]). A BST has the key-independent optimality
property iff it has the working-set property.

In particular, splay trees are key-independently optimal.

Proof. (sketch) Take a uniformly random bijection b. We must show that:

E[OPT (b(x1),b(x2),...,b(zyn)] = @(Z lgti(z;))

The O(-) direction is easy: the working-set bound does not depend on the ordering, so it applies
for any bijection. We must now show that a random bijection makes the problem as hard as
the working-set problem. We do that by showing that the Wilber number of any b(x;) is in
expectatation 1g tj(xj). Fix j. For each z;,7 < j, we remove any previous accesses to xz;; we also
ignore anything prior to the last access to z;. We are now left with t;(z;) elements. A random b
induces a random permutation of this working set. The following are classic results in probabilistic
analysis:

x; falls “roughly” in the middle with constant probability
e FElchanges to a;] = O(lgt;(z;))

e E[changes to b;] = O(lgt;(z;))

the changes to a; and the changes to b; interleave in Q(Igt;(x;)) positions, so E[Wilber number] =
O©(lgt;(x;)) = working-set bound

2.2 Wilber’s 1st Lower Bound

Fix an arbitrary static lower bound tree P with not relation to the actual BST 7', but over the
same keys. In the application that we consider, P is a perfect binary tree. For each node y in P,
and every access x;, we see whether the access is in the left subtree of y, the right subtree of y,
or neither. For each y, we count the number of interleaves (the number of alterations) between
accesses to the left subtree and to the right subtree.

Wilber’s 1st lower bound [Wil89] states that the total number of interleaves minus n is a lower
bound for all BST data structures serving the access sequence x. It is important to note that the
lower bound tree P must remain static.

We now sketch the proof of this lower bound. Let us set up an amortization argument. We define
the transition point of y in P to be the highest node 2z in the BST T such that the root-to-z path
in T includes a node from the left and right subtrees of y in P. Observe that the transition point
is well defined. Also, it is unique for every node y.



Each time an interleave through y occurs, we drop a marble on the transition point of y. Each time
the BST algorithm touches a node, we collect the marble that may be present in that node. We
now argue that a node never contains more than one marble. Before another interleave through y
occurs, we must touch the transition point of y. Thus, we never deposit another marble without
having picked up the previous one. Then, the number of interleaves is a lower bound on the number
of marbles deposited. The number of marbles picked up is a lower bound on the total cost. At the
end, there are at most one marble left in any node, so at most n marbles in total. Then, the cost
is at least the total number of interleaves minus n.

3 Tango Trees

Tango trees [DHIP04] are an O(lglgn)-competitive BST. They represent an important step forward
from the previous competitive ratio of O(lgn), which is achieved by standard balanced trees. The
running time of Tango trees is O(lglgn) higher than Wilber’s first bound, so we also obtain a
bound on how close Wilber is to OPT. It is easy to see that is the lower bound tree is fixed
without knowing the sequence (as any online algorithm must do), Wilber’s first bound can be
Q(lglgn) away from OPT, so one cannot achieve a better bound using this technique.

To achieve this improved performance, we divide a BST up into smaller auxiliary trees, which are
balanced trees of size O(lgn). If we must operate on k auxiliary trees, we can achieve O(klglgn)
time. We will achieve k = 1+ the increase in the Wilber bound given by the current access, from
which the competitiveness follows.

Let us again take a perfect binary tree P and select a node y in P. We define the preferred child
of y to be the root of the subtree with the most recent access (i.e. the preferred child is the left
one iff the last access under y was to the left subtree). If y has no children or its children have not
been accessed, it has no preferred child. An interleave is equivalent to changing the preferred child
of a node, which means that the Wilber bound is the number of changes to preferred children.

Now we define a preferred path as a chain of nodes, where each node is followed by its preferred
child. We store each preferred path from P in an auxiliary tree in the actual BST. Because the
height of P is lgn, each auxiliary tree will store < lgn nodes. A search on an auxiliary tree will
therefore take O(lglgn) time.

We now link together the auxiliary trees to complete the data structure. The leaves in an auxiliary
tree will have as children the roots of the auxiliary trees corresponding to preferred paths branching
off the current preferred path. It should also be noted that a preferred path is not stored by depth
(that would be impossible in the BST model), but in the sorted order of the keys.

3.1 Searching Tango trees

To search this data structure for node x, we start at the root node of the topmost auxiliary tree
(which contains the root of P). We then traverse the tree looking for x. It is likely that we will jump
between several auxiliary trees — say we visit k trees. We search each auxiliary tree in O(lglgn)
time, meaning our entire search takes place in O(klglgn) time. This assumes that we can update
our data structure as fast as we can search, because we will be forced to change k — 1 preferred
children (except for startup costs if a node has no preferred children).



3.2 Balancing Auxiliary Trees

The auxiliary trees must be updated whenever preferred paths change. When a preferred path
changes, we must cut the path from a certain point down, and insert another preferred path there.
Note that cutting from a point down is actually equivalent to cutting a segment in the sorted order
of the keys. Thus, we change preferred paths by cutting a subtree out of an auxiliary tree using
two split operations and adding a subtree using a concatenate operation. We know that balanced
BSTs can support split and concatenated in O(lg size) time, meaning they all operate in O(lglgn)
time. Thus, we remain O(lglgn)-competitive.

References

[DHIP04] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality
— almost. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’04), pages 484-490. IEEE Computer Society, 2004.

[Iac02] John Iacono. Key independent optimality. In ISAAC ’02: Proceedings of the 13th
International Symposium on Algorithms and Computation, pages 25-31. Springer-Verlag,
2002.

[Wil89] R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM J.
Comput., 18(1):56-67, 1989.



