
6.897: Advanced Data Structures Spring 2005

Lecture 3 — February 8, 2005

Prof. Erik Demaine Scribe: Jeff Cohen

1 Introduction

In the previous lectures we discussed hashing, presenting data structures capable of achieving ex-
cellent bounds for solving dictionary and membership problems. The model allowed us to compute
hash functions; for instance, the elements can be integers or strings.

This week, we will work in a more restricted and abstract setting, namely the comparison model:
elements can only be compared and the result is <, = or >. Furthermore, we only consider Binary
Search Trees. In this model of computation, we are given n keys placed in the n nodes of a binary
tree in symmetric order (an inorder traversal of the tree gives the elements in sorted order). We
are also given a pointer, which at the beginning of each operation is at the root. A unit-cost
manipulation of the tree can consist of: moving the pointer to the left child, right child, or parent
of the node to which it currently points, or performing a rotation.

When searching for x, our goal is to make the pointer point to the node x. This solves the dictionary
problem, because then we could retrieve whatever data is associated with x. However, because of
the restrictions in the model, BSTs can solve harder problems: searching implicitly determines the
predecessor or successor of a given x, if x is not in the set. Because these operations are essentially
equivalent to searching, it is customary to study BSTs in a simplified setting. We only care about
a static set of n elements (though the BST representing them can change in shape), and we only
consider successful searching.

2 The Cost of Searching

Note that in the worst case, the cost per access is Ω(lg n), because, even in any tree, the deepest
node is Ω(lg n) deep. For some access sequences, however, we may be able to do better (at least
in an amortized sense). This lecture is about which access sequences allow us to beat the O(lg n)
bound, how we can beat it, and what bounds we can achieve.

We begin by presenting preliminary examples of sequences for which we can achieve o(lg n) bounds.
A general access sequence is of the form 〈x1, x2, x3, . . . , xm〉; we always use m for the total num-
ber of operations. This allows correlation among the accesses. For instance, if the sequence is
〈1, 2, ..., n〉 (m = n), we can achieve O(1) cost per access by starting with a linear, sorted tree and
rotating it after each access:

1

4

1

2

3

4

1

2

3

4 1

2

3

In the stochastic model, the xj’s are i.i.d. random variables: element i ∈ [n] is accessed with
probability pi. In a degenerate case where (∃)j : pj ≈ 1, storing j at the root allows us to achieve
roughly O(1) time per access. In general, this setup reminds one of Huffman trees, which are
data structures that store data only at the leaves, and want to minimize the expected depth of an
element chosen according to the given distribution. This expected depth matches the entropy of
the distribution, upto an additive 1. The entropy is defined as:

H =
∑

i

pi lg
1
pj

+ O(1)

BSTs are more constrained in that they must arrange nodes in symmetric order in the tree. How-
ever, we will see that it is still possible to match the entropy bound (up to an additive 3).

3 Competitiveness and Optimality

We define OPT (x) to be the minimum cost to perform the sequence of accesses x = 〈x1, . . . , xm〉,
over all possible BST algorithms. Note that we can tune how the BST changes to the choice of
the sequence x. In particular, the algorithm knows the future: it can handle xi in a certain way,
optimizing also for future accesses. So OPT is an offline optimum.

We say that a BST algorithm is α-competitive if COST (x) ≤ αOPT (x) for all x. In this case,
the BST algorithm should be online: it must handle xi without knowing what future accesses
xi+1, . . . , xm will be. We say that a BST is dynamically optimal if it is O(1)-competitive. Dynamic
optimality has a profound meaning: knowing the future can only improve your bound by constant
factor. Thus, there does not exist any tree which is better than a dynamically optimal tree, not even
on a single sequence of accesses. Whether there exists a dynamically optimal BST is a long-standing
open problem, but an O(lg lg n)-competitive one has been found [3].

If we disallow rotations (we force the tree to be static), we can find an optimal BST via dynamic
programming. First observe that only the frequency of accessing each element matters; because the
tree is static, temporal correlations are inconsequential. The DP looks at each element r, and tries
to place r at the root. For each r, we have two subproblems: finding an optimal left subtree and
an optimal right subtree. In general, the subproblems are finding the optimal tree for an interval
of the elements, so there are O(n2) subproblems. Trying all roots for each one gives a dynamic
program running in time O(n3). This can be improved to O(n2), using a technique of Knuth [6].
Whether we can achieve a faster result is an open problem.

In this static case, the optimal cost per access is bounded by:

2

H − lg H − lg e + 1 ≤ OPT

access
≤ H + 3

Here H =
∑

i pi lg 1
pj

+ O(1). If we are in the stochastic model pi’s are actual probabilities,
and the “cost” is the expected cost of accessing an element from that distribution. If we have a
deterministic sequence of accesses, pi is the number of appearances of i in our sequence divided by
m (the empirical probability). A BST is said to be statically optimal (or alternatively to have an
entropy bound) if its cost is O(H). This means that the BST is O(1)-competitive against any static
tree. It is useful to achieve this without knowing the sequence of accesses in advance (i.e. give an
online algorithm). Note that our optimal construction is offline, because the pi’s have to be known
in advance. Splay trees can achieve this, and other remarkable bounds, online.

4 Splay Trees

Splay trees were introduced in a famous paper by Sleator and Tarjan [7]. They handle a search for
an element x by always bringing x to the root. First, we locate x by walking down the tree, and
comparing with the elements. Then, depending on the order of x, its parents, and its grandparent,
we do one of the following two cases:

The zig-zig case:

X

X

Y Y

Z

Z

A

A

B

BC

C

D

D

Rotate Y, rotate X

zig-zig case:

The zig-zag case:

X

W

Y X

W Y

A

B C

D

A B C D

Rotate X, rotate X

Zig-zag case:

At the end of this, we may need to do one more rotation, if x is the son of the root. Splay trees are
an unusual BST, in that they do not explicitly maintain any balance, or any auxiliary information.
However, they have a series of remarkable properties, such as static optimality; there is also a rich
set of conjectures, the most important of which is dynamic optimal.

3

4.1 Access Theorem

This theorem implies many interesting bounds on splay trees. Suppose we assign an arbitrary
weight wi to each element i in a splay tree. Define s(x) by:

s(x) =
∑

i

{wi | i is in the subtree rooted at x}

Define a potential function φ (for amortized analysis) by:

φ =
∑

x

lg s(x)

An intuition behind this is that φ is low if the tree is balanced and high if it is unbalanced.

Lemma 1. The amortized cost of one splay step is bounded by:

cost ≤ 3(lg snew(x) − lg sold(x))

The proof of this is simply a calculation of the effect of a splay step.

Theorem 2 (access theorem). The amortized cost of accessing x is bounded by:

cost ≤ 3(lg snew(x) − lg sold(x)) + 1

This follows from the previous lemma, because summing the costs of every splay step gives a
telescoping sum. The +1 is added for the final rotation that we may have to do. Observe the
snew(x) includes the weight of the entire tree, because x is now at the root.

As always in amortized analysis, we need to ensure that the potential cannot vary too much, because
otherwise we would have a high additive cost to pay for a large store of initial potential, and our
analysis would break down. We do this by bounding the minimum and maximum potential:

min φ ≥
∑

i

lg wi

max φ ≤ n lg
∑

i

wi

max φ − min φ ≤
∑

i

(lg
∑

j

wj − lg wi)

In all applications from below, this implies a startup cost of O(n) or O(n lg n). This is just an
additive constant per operation if, say, m = Ω(n lg n).

4.2 Consequences of the Access Theorem

Log Amortized. If wi = 1 for all i, then s(root) = n, and the amortized cost of an operation is
O(lg n

k) for some k ≥ 1, so the overall bound for the speed of an operation is O(lg n).

4

Static Optimality. If wi = pi = fi

m , where fi is the number of accesses to i in our sequence of m
accesses, then s(root) = 1 and s(x) ≥ wx = px, so that the time for an access is O(lg 1

k) for some
k ≥ px, so the time is O(lg 1

px
). Note that adding up COST (x) for all x gives entropy (amortized,

and to within a constant factor). Remarkably, we don’t need to know the values of pi to execute
the algorithm; we only used them in the analysis. Thus, we can get static optimality, even with an
online algorithm.

Static Finger Theorem. If you fix your finger (pointer) on some node f , the distance from f to a
node i is |i−f | (this is the distance in rank space). Choose wi = 1

(i−f)2 , and wf = 1. Then s(root) ≤
1+2

∑∞
k=1

1
k2 = 1+ π2

3 . The cost of an operation is thus O(lg O(1)
wi

) = O(lg (i − f)2) = O(lg (|i − f |))
(except for i = f , when it is O(1)). This theorem means that if you access something near the
finger, the access is cheap (logarithmic in the rank distance). Again, this is a truly remarkable fact,
because splay trees do not know where the finger is. Thus, they achieve this bound for any possible
finger simultaneously (but the finger must still be static).

Working-Set Theorem. Let ti(y) be the number of distinct elements (including y) accessed since
the last time y was accessed before time i. Then, the amortized cost to access xi is O(1 + lg ti(xi)).
This bound says that if accesses concentrate on a smaller set of elements (the working set), the
cost is the logarithm of this set, not of n. Such a working set phenomenon is frequently observed
and used, e.g., by caches. Equivalently, the bound says that if you access something you accessed
recently, the access is cheap.

To show this bound, we will change the potential function dynamically. At time i, let wy = 1
(ti(y))2 .

It can be seen that ti(y) is unique for each y, so w(root) =
∑∞

1
1
k2 = π2

6 . When we access xi, the
amortized cost is O(1 + lg O(1)

ti(xi)−2) = O(lg ti(xi)). After the operation, we change ti(xi) to 1 and
increment ti for every node accessed since the previous access to xi; that is, we increment ti(y)
for all y such that ti(y) < ti(xi) before we set ti(xi) to 1. This increases wxi to 1 and decreases
wy slightly for all such y. The only node whose weight increases (and could cause a problem by
increasing φ) is the new root, so it now appears in just one term of φ. It can be shown through
direct calculation that the potential can only decrease as the result of changing the weights in this
way.

4.3 Other Bounds for Splay Tress

There are other interesting bounds that do not follow from the access theorem, and which were
discovered after the original work of Sleator and Tarjan [7].

Scanning Theorem. This states that accessing all the elements of a splay tree in order, beginning
from any point, takes O(n) time [9].

Dynamic Finger Theorem. This states that accessing element xi costs O(lg(1 + |xi − xi−1|))
amortized. Thus, we have finger which is moved dynamically with new accesses (note that this

5

implies the static finger bound). This was a conjecture from the original paper by Sleator and
Tarjan [7], until it was finally proved by Cole [2] through a very complicated analysis.

Deque Conjecture. This is a special case of having two dynamic fingers, one on the left and
the other on the right. At any step, we can move any of these two fingers by 1 element to the
left or to the right, simulating a doubly ended queue (deque). The total cost is known to be
O((m + n)α(m + n)) [8] and conjectured to be O(m + n) [9].

Traversal Conjecture. This states that accessing elements in order, from any starting tree for
which we know a preorder traversal, takes O(n) time [7].

Unified Conjecture. This conjecture states that the time to access xi is:

O(lg miny[ti(y) + |xi − y| + 2])

Note that ti(y) + |xi − y| is the sum of temporal displacement from previous accesses and spatial
displacement between nodes. This conjecture means that if you access something near something
you accessed recently, the access is cheap – a generalization of the working set and finger bounds.
This is proven to be achievable on a pointer machine [1, 4], but it is not known if it is achievable
with a BST.

4.4 Implications of Bounds

There are a number of implications relating the bounds on splay trees [4, 5]. The Unified Conjecture
implies both the Working Set Theorem and the Dynamic Finger Theorem. The Working Set
Theorem implies the Static Optimality bound. The Static Optimality bound and the Dynamic
Finger Theorem each imply the Static Finger Theorem.

References

[1] M. Badoiu, E. Demaine, A Simplified, Dynamic Unified Structure, Latin American Theoretical
INformatics (LATIN), p. 466-473, 2004.

[2] R. Cole, On the dynamic finger conjecture for splay trees. Part II: The proof, SIAM Journal
on Computing 30(1), p.44-85, 2000.

[3] E. Demaine, D. Harmon, J. Iacono, M. Patrascu, Dynamic Optimality–Almost, Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), p.
484-490, October 17-19, 2004.

[4] J. Iacono, Alternatives to splay trees with O(log n) worst-case access times, Symposium on
Discrete Algorithms (SODA), p. 516-522, 2001.

[5] J. Iacono, New upper bounds for pairing heaps, Scandinavian Workshop on Algorithm Theory
(SWAT), p. 32-45, 2000.

6

[6] D. Knuth, Optimal binary search trees, Acta Informatica 1, p. 14-25, 1971.

[7] D. Sleator, R. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM 32, p. 652-686,
1985.

[8] R. Sundar, On the Deque conjecture for the splay algorithm, Combinatorica 12(1), p. 95-124,
1992.

[9] R. Tarjan, Sequential access in splay trees takes linear time, Combinatorica 5(5), p. 367-378,
November 4, 1985.

7

