
6.897: Selected Topics in Cryptography 27 February 2004

Lecture 8: The Dummy Adversary

Instructor: Ran Canetti Scribed by: Jonathan Herzog

1 Previous Lecture

• Motivation for the Universally Composable (UC) framework

• Definition of an interactive Turing Machine (ITM) system with a variable number of
machines

• Definition of the UC framework

2 The Dummy Adversary

In this lecture, we consider a variant definition of security that uses a fixed adversary AD

called the “dummy” adversary. This adversary is simply a proxy for the environment:

• All communication received from the protocol participants are fowarded directly to
the environment Z. That is, when AD receives incoming message m from party p, it
simply writes “received m from p” on the subroutine tape of Z.

• It sends messages from the adversary to the parties, as directed. That is, when AD

receives “send m to p” from Z, it writes m on the incoming message tape of party p.

Why are we interested in this dummy adversary? Because security against this adversary
is sufficient to ensure security in the general UC framework. That is:

Definition 1 We say that a protocol Π realizes functionality F w.r.t. the dummy adversary
AD if there exists an ideal-process simulator S such that for all environments Z:

IdealFS,Z ≈ ExecΠ,AD,Z

Theorem 1 Protocol Π realizes F with respect to the dummy adversary AD iff it realizes
F (according to the standard UC definition).

Proof. One direction is simple: if Π realizes F in the standard UC framework, then for
every adversary there exists a simulator S which is indistinguishable to every environment
Z. Hence, there must be such a simulator for the dummy adversary AD.

The other direction is more complex, and will not be proven via the contrapositive! We
know that Π achieves functionality F with respect to the dummy adversary AD. Hence,
there exists a simulator SD which is indistinguishable from the dummy adversary to every
environment Z.

Now, suppose that the environment is communicating with any other adversary A. Then
we construct a simulator for A as in Figure 1. That is, the simulator S operates as follows:

8-1



@
@

@
@

@
@@R@

@
@

@
@

@@I

A
A

AAK A
A
AAU

6

?

�
�

����
�
���

�
�

�
�

�
��� �

�
�

�
�

��	

A

S

Input from Z
Output to Z

Messages to FMessages from F

SD

Send m to PiMessage m from Pi

Figure 1: The Simulator S

• It simulates both the adversary A and the dummy simulator SD.

• Messages from the environment go right to A.

• Messages from A go to the environment.

• Messages from SD to the functionality are actually forwarded to the functionality, and
vice-versa.

• When A sends a message m to party Pi, the message is sent to SD, and messages from
SD ostensibly from party Pi are sent to the adversary A.

Now, will this simulator be indistinguishable from A to all environments in the real system?
We show the answer to be “yes.” For a given environment Z and adversary A, we construct
an environment ZD as in Figure 2 (ignoring the dashed box for the moment). That is, ZD

operates as follows:

• ZD simulates both the environment Z and the adversary A.

• The input to ZD is given to the simulated Z, and the output from Z is given as the
output of ZD.

8-2



output

?

Q
Q

Q
Q

Q
Q

QQs

Z
Z

Z
Z

Z
ZZ}

6

?

6

?

6

?
7�

�
�

�/

6

?

oS
S

S
Sw

?

6

6

?

6

P1 P2 P3
AD/SD

A

S

ZD
Z

input

Figure 2: The environment ZD

• Messages from the simulated environment Z to parties are forwarded to the parties,
and messages from the parties to ZD are forwarded to the simulation of Z.

• Messages from the simulated Z to the adversary are given to the simulated A, and
messages from the simulated A to the environment are given to the simulated Z.

• Messages from the simulated adversary to parties are not given to the real parties,
but sent to the real adversary. (In the diagram, we’ve already replaced this “real”
adversary with either AD or SD.)

• Likewise, messages from the real adversary are given to the simulated A.

• Messages between the parties and real adversary are forwarded and returned as usual.
Also, messages between the real simulator and functionality are passed and returned
as usual.

By definition, SD is indistinguishable from AD to all environments, so it is indistinguishable
to this one in particular. Now, look what happens when we give either AD or SD to the
dummy environment ZD as the real adversary (as indicated in the diagram above).

8-3



First, notice that the output of ZD with AD running protocol Π will be indistinguishable
from the output of ZD with SD and functionality F:

ExecΠ,AD,ZD
≈ IdealFSD,ZD

However, ignore the solid box for ZD and notice that the dashed box is S. Then we see
that the combination of ZD, SD and F is exactly the same as the combination of the
real environment Z, functionality F, and the simulator constructed above for the arbitrary
adversary A:

IdealFSD,ZD
= ExecF,S,Z

(Note the strict equality.) Likewise, the combination of ZD with dummy adversary AD in
an execution of Π is exactly the same as the combination of Z, protocol Π, and a composite
adversary composed of A and AD. However, the dummy adversary AD simply forwards
messages, so this composite adversary is equivalent to A. Hence:

ExecΠ,AD,ZD
= ExecΠ,A,Z

Hence,
IdealFS,Z ≈ ExecΠ,A,Z

Note that it is essential for this proof that the dummy adversary only forward messages,
and that we assume SD accurately simulates AD for protocol Π/functionality F. Lastly,
this theorem crucially depends on the possibility of arbitrary communication between en-
vironment and adversary, so that we can think of A as being both part of environment ZD

and outside of Z. 2

3 Hybrid execution

In this section, we define the hybrid execution model which will be used in the main UC
theorem. This execution model is much like previous ones, except that now parties can
access multiple copies of the functionality F. In particular, the hybrid model of protocol Π
with ideal functionality F and environment Z is system of ITMs as follows:

• The initial TM is the distinguished machine Z, and it has a fixed ID.

• The initial TM Z can activate a single machine to act as the adversary A.

• It can also activate many copies of other ITMs to act as the honest parties. These
parties run protocol Π and must all have the same session ID sid .

• The adversary A can send messages to the incoming message tapes of all parties and
to subroutine tape of the environment.

• All honest parties can write messages on the incoming message tape of A. They can
invoke new parties to run Π. They can write to the subroutine tape of their invoker,
and can write to the input tapes of those machines they invoke.

• All honest parties (and the adversary) can send messages to and receive messages
from multiple copies of functionality F.

8-4



– Each copy of F has a unique identifier sid and a number of dummy parties
associated with it.

– To interact with a copy of F with identifier sid , a party playing the role pid
sends a message to the dummy party with ID = (sid , pid). Likewise, a message
from the functionality is sent to the dummy party with ID = (sid , pid) (for some
pid).

• The adversary A can write a special “corrupt” message on the incoming message tape
of any party P . When this happens:

– The party P writes “corrupted” on the subroutine tape of Z.

– At each subsequent activation, P sends its entire state to Z.

– A assumes all write privileges of P .

– The reaction of F to corruption messages is left up to the discretion of the definer
of F. Such messages are also written on the subroutine tape of Z, however.

4 The Composition Operation

Suppose that Q is a protocol in this F-hybrid environment and that P is a protocol in the
regular model. Then QP is the protocol defined as follows:

• Each message to the dummy party for F with ID = (sid , pid) is replaced with an
input to ITM running P with ID = (sid , pid).

• Each output from the new party with ID = (sid , pid) is treated as coming from the
dummy party for F with the same ID .

Note that in QP there may be many copies of P running concurrently, but with different
values of sid . Also note that if P is a real-life model then so is QP . Likewise, if P is a
protocol in some F′-hybrid model, then so is QP .

5 The UC Theorem

Theorem 2 Let Q be a protocol in the F-hybrid model and let P be a protocol that securely
realizes F. Then for every adversary A there exists another adversary H such that for every
environment Z:

ExecF
Q,H,Z ≈ ExecQP ,A,Z

Proof. Taking advantage of our previous theorem, we prove this with respect to the dummy
adversary AD. That is, we will show that it is possible to simulate, in the F-hybrid model,
the execution of AD and QP . To construct this simulator H, we will rely on the security of
protocol P . Since P securely realizes F, we know that there exists a simulator SP such that
no environment can distinguish between P/AD in the real setting and F/SP in the ideal
setting:

IdealFSP ,Z ≈ ExecP,AD,Z

We will use SP to construct the adversary H as follows:

8-5



Z

AD

Q1 Q2

P1,1 P1,2 P2,1 P2,2

(Single lines are for I/O, double lines for subroutine.)

Figure 3: Example of the QP system

• The simulator H simulates both AD and several copies of F.

• Messages between the machines executing protocol Q and the adversary are sent to
the Q machines and the simulated AD. (That is, H behaves exactly like AD with
regard to the machines running Q.)

• Messages that the simulated AD would like to send to the machines running protocol
P , on the other hand, are sent to the simulated SP . Such messages must specify
the sid and pid of the intended recipient. Hence, H simulates a copy of SP for each
sid which is used, and routes the messages accordingly. Recall that since AD is the
dummy adversary, such messages actually originate with the environment Z.

• Likewise, messages from the simulated copies of SP are routed by H to the simulated
AD (and thus send by AD to the adversary).

• Since there is a bijection from copies of F in the F-hybrid model to executions of P
in the real model, there will be a similar bijection from copies of F to instances of
SP . Thus, when a copy of SP wishes to send a message to its copy of F (which it
presumes to be the only one in the world) H routes it to the appropriate copy among
the many copies of F available. It is essential for this that the sid identifiers given
to the various executions of P or dummy parties for the F copies be unique and not
conflict.

Pictorially, an example real setting (with two parties in Q, two parties in P , and two
executions of P running) can be seen in Figure 3. Then the simulator is the composite
machine containing the dummy adversary and the simulators as shown in Figure 4.

8-6



Z

AD

Q1 Q2

F1 F2

S1 S2

H

Figure 4: Example of the Q-F system

Now, we wish to show that this adversary H, interacting with Q in the F-hybrid model,
is indistinguishable from the dummy adversary AD and QP in the real model. We return to
the standard tools of computational cryptography, and show this with the hybrid argument.

Suppose that there is an environment that distinguishes the two settings. That is, there
exists an environment Z so that

IdealFQ,H,Z 6≈ ExecQP ,AD,Z

We use the hybrid argument to construct an environment Z′ that distinguishes a single run
of P from SP . Let m be a number which bounds the number of times P is executed in an
execution of QP and AD. Because the system is polynomial-time (see previous lectures) we
know that m must be at most polynomial in the security parameter.Then we construct m
“hybrid” systems by, in instance i, letting the first i executions of P be replaced by the
simulator SP and the functionality F. The rest of the execution of Π remains unchanged.
For the example of Figures 3 and 4, “hybrid” 1 would be as shown in Figure 5.

Thus, if Z can distinguish between “hybrid” 0 (the execution of QP and AD in the real
setting) and “hybrid” m (the execution of Q and H in the F-hybrid setting) with some
advantage e, then there exists an environment Z′ that can distinguish between “hybrid” i
and “hybrid” i + 1 with advantage at least e/m. Thus, we can create an environment Z′′

that operates as follows:

• It begins by simulating Z′, AD, and the parties running Q.

• For the first i executions of P started in the system, it simulates the functionality F
and the simulator SP .

8-7



Z

AD

Q1 Q2

F2

S2

P1,1 P1,2

H1

Figure 5: Example of a hybrid system

• For the i + 1 execution of P , it starts up external real parties to execute it. Messages
from the simulated AD to parties running the i+1st execution of P are routed to the
external dummy adversary. It also routes messages from the simulated parties to the
i + 1th execution of P to the external execution.

• For the i + 2nd execution of P and so on, it simulates the parties to execute P .

• The output of Z′′ will be exactly that of the simulated Z′.

If the external protocol is actually executed by the parties and the dummy adversary
A, then the simulated Z′ sees exactly the ith “hybrid” model. If the external protocol is
simulated by the simulator SP and functionality F, then the simulated Z′ sees exactly the
i + 1st “hybrid” model. Hence, A′′ will distinguish the protocol P from simulation SP with
advantage at least e/m, contradicting the assumed security of P .

2

6 Implications of the UC Theorem

Corollary 1 Let Q be a protocol that securely realizes F′ in the F-hybrid model, and P a
protocol that securely realizes F. Then QP securely realizes F′.

Proof. Let A be an adversary that operates against QP . By the composition theorem, for
every adversary A there is another adversary H so that

ExecF
Q,H,Z ≈ ExecQP ,A,Z

8-8



for all environments Z. Since Q securely realizes F′ in the F-hybrid model, there must be
a simulator S′ so that

IdealF
′

S,Z ≈ ExecF
H,Z

Hence for every adversary A there exists a simulator S such that for every environment:

IdealF
′

S,Z ≈ ExecQP ,A,Z

Thus, QP securely realizes F′. 2

Another implication of the theorem is that we can immediately deduce security in a
multi-execution environment. That is, suppose that Q securely realizes a functionality F.
Then interacting with multiple executions of Q can be simulated using multiple instances
of F.

A last implication of the UC theorem is that protocols can be designed in a modular
way. To design a protocol that securely realizes F:

• Break F into sub-tasks F1, F2,. . .Fn.

• Design protocols Πi that securely realize each Fi.

• Design a protocol Π that securely realizes F assuming ideal access to the Fi function-
alities.

• Compose the protocols Πi with protocol Π to achieve a protocol that securely realizes
F from scratch.1

1The slides from class seem to have omitted the steps:

– Realize that your definitions of Fi are horribly, horribly broken.

– Fix. Lather, rinse, repeat.

– Finally, realize what task Fi is all about, and redefine it entirely in light of your new intuition –Ran

8-9


