
Today’s topics:

• UC ZK from UC commitments (this is information theoretic and unconditional; no crypto needed)

• MPC, under any number of faults (using the paradigm of [GMW87])

• MPC in the plain model with an honest majority (using elements of [BOGW88] and [RBO89])

1 UC Zero Knowledge from UC Commitments

To implement Fzk, we will use the following ingredients: the “weak soundness” version of ZK, Fwzk; the
Blum Hamiltonicity protocol; a proof that one instance of the protocol realizes Fwzk in the Fcom-hybrid
model; and a realization of Fzk using k parallel copies of Fwzk.

Let’s recall the FH
wzk functionality (i.e., “zero knowledge with weak soundness/extraction”). For simplic-

ity, we work directly with the Hamiltonicity relation H, where H(G, h) = 1 iff h is a Hamiltonian tour of a
graph G. The intuition behind Fwzk is that, with probability 1/2, it allows a corrupted prover (and only a
corrupted prover) to “cheat” if it so desires. When the prover cheats, Fwzk instructs the verifier to accept
even if the prover did not supply a valid witness. The functionality is formally defined as follows:

1. Receive (sid, P, V, G, h) from (sid, P ). If P is uncorrupted, set v ← H(G, h). If P is corrupted, then:

(a) Choose b← {0, 1}, and send b to S.

(b) Obtain a bit b′ and a cycle h′ from S.

(c) If H(G, h) = 1 or b = b′ = 1 then set v ← 1. Else set v ← 0.

Finally, output (sid, P, V, G, v) to (sid, V ) and to S, and halt.

[the Blum protocol?]

Claim 1 The Blum protocol security realizes FH
wzk in the Fcom-hybrid model.

Proof Sketch: Let A be an adversary that interacts with the protocol. We construct an ideal-process
adversary S that fools all environments. There are four cases:

1. If A controls the verifier (zero-knowledge): S gets input z′ from Z, and runs A on z′. If the value from
Fzk is (G, 0), then send (G, reject) to A. If the value from Fzk is (G, 1), then simulate an interaction
for V :

(a) For all i, send (sidi, receipt) to A.

(b) Obtain the challenge c from A.

(c) If c = 0, then (by pretending to be Fcom) send openings of a random permutation of G to A. If
c = 1, then (by pretending to be Fcom) send an opening of a random Hamiltonian tour to A.

In this case, the simulation is perfect.

2. If A controls the prover (weak extraction): S gets input z′ from Z, and runs A on z′. Then:

(a) Obtain from A all the commit messages to Fcom and record the committed graph and permutation.
Send (sid, P, V,G, h = ⊥) to Fwzk.

(b) Obtain the bit b from Fwzk. If b = 1 (i.e., cheating is allowed), then send the challenge c = 0 to
A. If b = 0 (no cheating allowed), then send c = 1 to A.

(c) Obtain A’s openings of the commitments (either a permutation of the graph, or a Hamiltonian
cycle). If c = 0 (permutation) and all openings are consistent with G, then send b′ = 1 to Fwzk;
if some openings are bad then send b′ = 0. If c = 1 (cycle) and the openings are of a proper
Hamiltonian cycle h′ then send h′ to Fwzk; otherwise send h′ = ⊥.
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This simulation is also perfect: the challenge c is a uniform and independent bit, and V ’s output is 1
iff A opened all its commitments correctly (as determined by c).

3. The cases in which A controls both parties or neither party are trivial.

4. Handling adaptive corruptions is also trivial: neither party has any secret state, so the simulator need
not provide anything special to A upon corruption.

�

2 From weak ZK to full ZK

The protocol for realizing FR
zk in the FR

wzk-hybrid model (for any relation R) is just what you’d expect: run
k copies of Fwzk in parallel. The prover algorithm, on input (x,w), sends (x, w) to each of k copies of Fwzk.
The verifier, on empty input, receives (xi, bi) from the ith copy. If all xi are the same x and all bi are the
same b, output (x, b), else output ⊥.

Claim 2 Parallel composition of k copies of Fwzk realizes Fzk.

Proof: Let A be an adversary in the FR
wzk-hybrid model; we’ll construct an adversary that interacts with

FR
zk and fools all environments. There are four cases:

1. If A controls the verifier: this case is simple. All A expects to see is k copies of (x, b) being delivered
by the copies of Fwzk. S runs A, obtains (x, b) from FR

zk, sends k copies to A, and outputs whatever
A outputs.

2. If A controls the prover: here, A is providing k inputs x1, . . . , xk to the k copies of FR
wzk, obtaining k

bits b1, . . . , bk from these copies, and giving witnesses w1, . . . , wk and bits b′1, . . . , b
′
k in return. S runs

A, obtains the xis from A, chooses random bits b1, . . . , bk to give to A, and obtains the wis and b′is.
Then:

• If all the xis are the same x and all copies of FR
wzk would accept (either because bi = b′i = 1 or

R(x,wi) = 1 for all i), then pick a wi such that R(x, wi) = 1 and give (x, wi) to FR
zk. (If no such

wi exists, then fail; this can happen only when all bi are 1, which occurs with probability 2−k.)

• Otherwise give (x,⊥) to FR
zk.

3. If A controls both parties or neither party, the simulation is trivial. Handling adaptive corruptions is
trivial as well (no party has any secret state).

We analyze S: when the verifier is corrupted, the views of Z in the hybrid and ideal interactions are identically
distributed. When the prover is corrupted, the only difference is that S may fail with probability 2−k;
conditioned on non-failure, the views are identical. Therefore the views are statistically indistinguishable.
�

3 Realizing any two-party functionality

This section is based on [CLOS02], which is based on the paradigm of [GMW87]. The paradigm is to start
with a protocol that is secure against semi-honest adversaries (i.e., those that always follow the protocol,
even when corrupted). Then construct a general compiler that transforms protocols that are secure against
semi-honest parties into protocols that are secure against malicious parties. We will first deal with two-party
functionalities and then generalize to multi-party ones.

For the semi-honest case, we will proceed in three steps:

1. Present the ideal oblivious transfer (OT) functionality Fot.

2. Show how to realize Fot for semi-honest adversaries, in the plain model.
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3. Show how to realize “any functionality” in the Fot-hybrid model.

Before proceeding further, we note that there are two natural variants of semi-honest adversaries. In
the first, the adversarial parties can change the inputs that we given by the environment, but are otherwise
passive. In the second, the environment gives inputs directly to the parties, and the adversary merely listens
(i.e., it cannot change the inputs). We will use the first variant to model semi-honest adversaries.

Here is the 1-out-of-m oblivious transfer functionality, Fm
ot (we name the sending party T to disambiguate

with the simulator, and the receiving party R):

1. Receive (sid, T, R, v1, . . . , vm) from (sid, T ).

2. Receive (sid, R, T, i ∈ {1, . . . ,m} from sid, R).

3. Output (sid, vi) to (sid, R).

4. Halt.

To realize F 2
ot, we can use the protocol from [EGL85]: let F be a family of trapdoor permutations and

let B be a hard-core predicate for F . Then the protocol is the following:

1. T (v0, v1) chooses f, f−1 from F and sends f to R.

2. R(i), i ∈ {0, 1}, chooses x0, x1, and sets yi = f(xi) and y1−i = x1−i, and sends (y0, y1) to T .

3. T computes vi ⊕B(f−1(yi)) for i = 0, 1 and sends (t0, t1) to R.

4. R outputs vi = ti ⊕B(xi).

Claim 3 The above protocol realizes F 2
ot for semi-honest adversaries with static corruptions.

Proof: For any A, we will construct an S that fools all Z. There are two interesting cases:

• A corrupts T : A expects to see T ’s input (v0, v1), plus the two values (y0, y1) received from R. S can
easily simulate this view, where (v0, v1) are taken as T ’s inputs in the ideal process and (y0, y1) are
random.

• A corrupts R: A expects to see R’s input i, the function f , and the bits (t0, t1). S works as follows:
obtain vi from F 2

ot, give the ideal-process input i to A, select (f, f−1) from F and give the pair to A,
receive (y0, y1) from A where yi = f(xi) and y1−i = x1−i for random x0, x1 due to semi-honesty, and
send (t0, t1) to A where ti = vi ⊕B(xi) and t1−i is random.

We now analyze S. In the first case, the simulation is perfect. In the second case, the validity of the
simulation reduces to the hardness of B: if we had an environment that could distinguish between real and
ideal executions, we could distinguish between (f(x1−i), B(x1−i)) (the real-world case) and (f(x1−i), t1−i)
(the ideal-world case), where x, t1−i are random. �

Some remarks on the above protocol: it easy generalizes to n-out-of-m OT. To obliviously transfer k-bit
strings, we can invoke the protocol k times (due to semi-honesty, the receiver will always ask for bits from
the same string). For adaptive adversaries with erasures, the protocol can easily be made to work — R just
erases x0, x1 before sending (y0, y1). Without erasures, we need to do something slightly different.

3.1 Evaluating general functionalities in the two-party, semi-honest case

For preliminaries, we represent the functionality F as a Boolean circuit, with the following properties:

• F is a “standard functionality;” i.e. it has a “shell” and a “core,” where the core does not know who
is corrupted. Our protocol evaluates the core only.

• F is written as two-input ⊕ (addition mod 2) and ∧ (multiplication mod 2) gates.

• The circuit has 5 types of input lines: inputs of P0, inputs of P1, inputs of S, random inputs, and local
state inputs.
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• The circuit has 4 types of output lines: outputs to P0, ouputs to P1, outputs to S, and local state for
the next activation.

Now we describe the protocol in the Fot-hybrid model:

1. Share inputs. When Pi is activated with a new input, it notifies P1−i and:

(a) Shares each input bit b with P1−i, by sending b1−i ← {0, 1} to P1−i and keeps bi = b⊕ b1−i.

(b) For each random input line r, chooses r0, r1 ← {0, 1} and sets r1−i to P1−i.

(c) Pi and P1−i keep the shares of the local state lines from the previous activation (initially, they
are all set to 0).

(d) Pi sets its shares of the adversary/simulator input lines to be 0.

When Pi is instead notified by P1−i, it proceeds as above except with input bits equal to 0.

Now all inputs lines to the circuit have been shared between the two parties.

2. Evaluate the circuit. The parties evaluate the circuit gate-by-gate, so that the output value of each
gate is shared between the parties. Let a, b be the inputs to the gate, and c denote the output.

For an addition gate, each party just sums (mod 2) its shares of the two inputs.

For a multiplication gate, P0 and P1 use F 4
ot as follows: P0 chooses c0 at random, and acts as the

sender with input

v00 = a0b0 + c0

v01 = a0(1− b0) + c0

v10 = (1− a0)b0 + c0

v11 = (1− a0)(1− b0) + c0

while P1 plays the receiver with input (a1, b1) and sets the output to be c1. It is easy to verify that
c0 ⊕ c1 = (a0 ⊕ a1)(b0 ⊕ b1).

3. Generate outputs. Once all the gates have been evaluated, each output has been shared between
the parties. Then P1−i sends to Pi its share of the output lines assigned to Pi; Pi reconstructs the
values on its output lines and outputs them; Pi keeps its share of each local-state line to be used in
the next activation; outputs to the adversary are ignored.

Claim 4 Let F be any standard ideal functionality. Then the above protocol realizes F in the Fot-hybrid
model for semi-honest, adaptive adversaries.

Proof Sketch: For any A, we construct an S that fools all Z. The simulation will be unconditional and
perfect. Here is why and how:

• The honest parties obtain the correct function values, as in the ideal process.

• P0 sees only random shares of input values, plus its outputs. This trivial for S to simulate.

• P1 receives the corresponding information, plus random shares of all intermediate values from Fot.
This is also easy to simulate.

• Upon corruption, it’s easy to generate local state that is consistent with the protocol.

�
Some remarks: there is a protocol by Yao that works in a constant number of rounds, which can be proven

secure for static adversaries, and also can be made to work, with erasures, against adaptive adversaries.

Research Question 1 Without erasures, is there a general, constant-round construction?
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3.2 Protocol compilation

In the spirit of [GMW87], our aim is to force malicious parties to follow the semi-honest protocol specification.
Here’s how:

• Parties should commit to their inputs.

• Parties should commit to uniform random tapes (using secure coin-tossing to ensure uniformity).

• Run the semi-honest protocol Q, and in addition, parties use zero-knowledge protocols to prove that
they have been following Q. That is, each message m of Q is followed by a proof of the NP statement:
“there exist input x and random input r that are the legitimate openings of the commitments above,
and such that the message m is the result of running the protocol on x, r, and the messages I received
so far.”

Consider the construction of a UC “GMW compiler.” The naive approach is to construct such a compiler,
given access to the ideal commitment and ZK functionalities, compose with protocols that realize those
functionalities, and use the composition theorem to prove security. However, if ideal commitment is used,
there is no commitment string to prove statements about! This calls for a new “commit and prove” primitive
that combines the two functionalities: parties should be able to commit to values, and prove, in zero-
knowledge, statements about those values. Here is the formal definition of the FR

cp functionality for a given
poly-time relation R:

1. Upon receiving (sid, C, V, commit, w) from (sid, C), add w to the list W of committed values, and output
(sid, C, V, receipt) to (sid, V ) and S.

2. Upon receiving (sid, C, V, prove, x) from (sid, C), send (sid, C, V, x, R(x,W )) to S. If R(x,W ) = 1 then
also output (sid, C, V, x) to (sid, V ).

Some remarks about this functionality: V is assured that the value x it receives is in the relation R. P
is assured that V learns nothing other than x and R(x,W ). In the Fcp-hybrid model, we can do the GMW
compiler without computational assumptions! (See below.)

Here is a protocol to realize FR
cp in the Fzk-hybrid model. The protocol uses Com, which is any perfectly

binding, non-interactive commitment scheme.

1. On input (sid, C, V, commit, w) [i.e., to commit to value w], C computes a = Com(w, r) for random r,
adds w to the list W , adds a to the list A, adds r to the list R, and sends (sid, C, V, prove, a, (w, r)) to
FRc

zk , where Rc = {(a, (w, r)) : a = Com(w, r)}.

2. Upon receiving (sid, C, V, a, 1) from FRc

zk , V adds a to its list A, and outputs (sid, C, V, receipt).

3. On input (sid, C, V, prove, x) [i.e., to prove statement x], C sends (sid, C, V, prove, (x,A), (W,R)) to F
Rp

zk ,
where

Rp = {((x,A), (W,R)) :
W = w1 · · ·wn, A = a1 · · · an, R = r1 · · · rn, R(x, W ) = 1 and ai = Com(wi, ri) for all i.}

4. Upon receiving (sid, C, V, (x, A), 1) from F
Rp

zk , V verifies that A agrees with its local list A, and if so,
outputs (sid, C, V, x).

Theorem 1 The above protocol realizes FR
cp in the Fzk-hybrid model for non-adaptive adversaries, and

assuming the security of Com.

Proof: For any A, we construct an S that fools all Z. First, S runs A. Then we consider two cases:

• The committer is corrupted: in the commit phase, S obtains from A the message (sid, C, V, prove, a, (w, r))
to FRc

zk . If Rc holds on a and (w, r), then S sends (sid, C, V, commit, w) to Fcp. In the proof phase, S

obtains from A the message (sid, C, V, prove, (x, A), (W,R)) to F
Rp

zk . If Rp holds on (x,A) and (W,R),
then S sends (sid, C, V, prove, x) to Fcp.
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• The verifier is corrupted: in the commit phase, S obtains from Fcp a (sid, C, V, receipt) message, and
sends to A the message (sid, C, V, a), where a = Com(0, r) for random r. In the proof phase, S obtains
from Fcp a (sid, C, V, x) message, and simulates for A the message (sid, C, V, (x, A)) from F

Rp

zk , where
A is the list of commitments that S has generated so far.

Let’s analyze S: for a corrupted committer, the simulation is perfect. For a corrupted verifier, the only
difference between simulated and real executions is that the commitments are all to 0 instead of the witnesses.
If Z distinguishes between these two cases, it’s straightforward to use Z to break the hiding property of the
commitment scheme. �

Some remarks: the simulation fails in case of adaptive adversaries, even with erasures, because the
commitments are perfectly binding (and hence cannot correspond to the good witnesses). We can fix this
problem by using “equivocable commitments.”

Research Question 2 Can Fcp be realized unconditionally (i.e., in some hybrid model without computa-
tional assumptions)?

Now that we have Fcp, we can construct the full protocol (in the Fcp-hybrid model) for malicious adver-
saries. Let P = (P0, P1) be the protocol that assumes semi-honest adversaries. The protocol Q = C(P ) uses
two copies of Fcp, where in the ith copy, Qi is the prover and Q1−i is the verifier. The code for Q0 is as
follows (and the code for Q1 is similar):

1. Commit to Q0’s randomness. Q0 chooses random r0 and sends (sid.0, Q0, Q1, commit, r) to Fcp.
Q0 receives r1 from Q1, and sets r = r0 ⊕ r1.

2. Commit to Q1’s randomness. Q0 receives (sid.1, Q1, Q0, receipt) from Fcp and sends a random value
s0 to Q1.

3. Receive the input x in the ith invocation. Q0 sends (sid.0, Q0, Q1, commit, x) to Fcp. Let M be
the list of messages seen so far. Q0 runs the protocol P on input x, random input r, and messages M ,
and obtains either:

• A local value, in which case Q0 outputs this value.

• An outgoing message m. In this case, send (sid.0, Q0, Q1, prove,m) to Fcp, where the relation used
by Fcp is:

Rp = {((m,M, r2), (x, r1)) : m = P0(x, r1 ⊕ r2,M)}

4. Receive the ith message m. Q0 receives (sid.1, Q1, Q0, prove, (m,M, s1)) from Fcp. Q0 verifies that
s1 is the value it sent in Step 2, and that M is the list of messages it has sent to Q1. If so, then Q0

runs P0 on incoming message m and continues as in Step 3.

Theorem 2 Let P be any two-party protocol. Then the protocol Q = C(P ), run with malicious adversaries
in the Fcp-hybrid model, emulates protocol P , when run with semi-honest adversaries.

Formally: for any malicious adversary A there exists a semi-honest adversary S such that for any envi-
ronment Z we have:

EXECP,S,Z ≈ EXEC
Fcp

Q,A,Z .

Corollary 1 If protocol P securely realizes F for semi-honest adversaries then Q = C(P ) securely realizes
F in the Fcp-hybrid model for malicious adversaries.

Proof Sketch: We will skip the details of the proof, since they are pretty straightforward. However, we
highlight a few of the properties of the proof: it is unconditional, and offers perfect simulation. It works even
for adaptive adversaries. However, it requires S to be able to change the inputs of the semi-honest parties
(hence our choice of the specific semi-honest model above). �
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4 Extending to the multi-party case

There are a number of challenges we must conquer in order to to multi-party computation:

• Construct a basic, semi-honest protocol.

• Deal with asynchronous channels with no guaranteed message delivery.

• Deal with issues of broadcast/Byzantine agreement.

• Figure out how and where to use existing primitives (OT, commitment, ZK, commit-and-prove).

• Deal with a variable number of parties.
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