Batch Verification Garay, Juan A.
Bellare, Mihir

with Applications to Cryptography and Rabin, Tal
Checking

(Invited Paper)

Mihir Bellare!*, Juan A. Garay?, and Tal Rabin?

! Department of Computer Science & Engineering, Mail Code 0114,
University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
mihir@cs.ucsd.edu http://wuw-cse.ucsd.edu/users/mihir
2 IBM T.J. Watson Research Center,
PO Box 704, Yorktown Heights, New York 10598, USA.

{garay,talr}@watson.ibm.com http://www.research.ibm.com/security

Abstract. Let R(-) be a polynomial time-computable boolean relation.
Suppose we are given a sequence insty, ... , inst, of instances and asked
whether it is the case that R(inst;) = 1 for all ¢ = 1,...,n. The naive
way to figure out the answer is to compute R(inst;) for each ¢ and check
that we get 1 each time. But this takes n computations of R. Can one
do any better?

The above is the “batch verification” problem. We initiate a broad in-
vestigation of it. We look at the possibility of designing probabilistic
batch verifiers, or tests, for basic mathematical relations R. Our main
results are for modular exponentiation, an expensive operation in terms
of number of multiplications: here g is some fixed element of a group
G and R(z,y) = 1 iff ¢ = y. We find surprisingly fast batch verifiers
for this relation. We also find efficient batch verifiers for the degrees of
polynomials.

The first application is to cryptography, where modular exponentiation
is a common component of a large number of protocols, including digital
signatures, bit commitment, and zero knowledge. Similarly, the prob-
lem of verifying the degrees of polynomials underlies (verifiable) secret
sharing, which in turn underlies many secure distributed protocols.

The second application is to program checking. We can use batch verifi-
cation to provide faster batch checkers, in the sense of [20], for modular
exponentiation. These checkers also have stronger properties than stan-
dard ones, and illustrate how batch verification can not only speed up
how we do old things, but also enable us to do new things.

* Work supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard
Foundation Fellowship in Science and Engineering.

268 Mihir Bellare, Juan A. Garay, and Tal Rabin

1 Introduction

We suggest the notion of batch verification. Based on this we suggest and im-
plement a new paradigm for program checking [7]. We also suggest applications
in cryptography. Motivated by this we design batch verifiers for some particular
functions of interest in these domains.

1.1 Batch Verification

Let R be a (polynomial time-computable, boolean) relation. The verification
problem for R is given an instance inst, check whether R(inst) = 1. In the batch
verification problem we are given a sequence insty,... ,inst, of instances and
asked to verify that for all ¢ = 1,... ,n we have R(inst;) = 1. The naive way
is to compute R(inst;), and check it is 1, for all s = 1,... ,n. We want to do it
faster. To do this, we allow probabilism and an error probability. A batch verifier
(also called a test) is a probabilistic algorithm V' which takes insty, ... , inst, and
produces a bit as output. We ask that when R(inst;) = 1foralli =1,... ,n, this
output be 1. On the other hand, if there is even a single i for which R(inst;) = 0
then we want that V (insty, . .. ,inst,) = 1 with very low probability. Specifically,
we let [be a security parameter and ask that this probability be at most 2.

We stress that if even a single one of the n instances is “wrong” the verifier
should detect it, except with probability 2. Yet we want this verifier to run
faster than the time to do n computations of R.

1.2 Application Domains

Batch verification will be useful in any algorithmic setting where there are repet-
itive tasks. Before presenting our results and the particular applications that en-
sue, let us briefly discuss two concrete application domains that have motivated
our work.

Cryptography. Tt is a consequence of the “adversarial” nature of cryptography
that many of its computational tasks are for the purpose of “verifying” some
property or computation. A setting where batch verification is useful is in the
verification of digital signatures. For example, the validity of a sequence of elec-
tronic coins needs to be verified by checking the bank’s signature on each coin.
When there are lots of coins, batch verification will help. Similarly one may re-
ceive many certificates, containing public keys signed by a certification authority,
and one can check all the signatures simultaneously.

Beyond this, batch verification is useful for a large number of standard crypto-
graphic protocols. These protocols typically involve repetition of some operation,
such as a committal, done for example via the discrete exponentiation function
x — g* in a group with generator g, so that a party commits to z by providing
y = ¢°, and later de-commits by revealing x. At this point, someone must check
that indeed y = ¢g*. In a zero-knowledge protocol, thousands or more committals
are being performed simultaneously, and batch verification will be useful. The

Batch Verification with Applications to Cryptography and Checking 269

same is true for other standard “cut-and-choose” type protocols, for example for
key escrow.

We also provide fast batch verification methods for degrees of polynomials,
which have applications in verifiable secret sharing and other robust distributed
tasks. We elaborate on more specific applications of our results in this domain
in Sect. 1.5.

Program checking. The notion of batch verification has on the face of it nothing
to do with program checking: as Sect. 1.1 indicates, there is no program in the
picture that one is trying to check. Nonetheless, we apply this notion to do
program checking in a novel way. Our approach, called batch program instance
checking, has the following benefits: it permits fast checking; and it permits
instance checking, not just program checking, in the sense that a correct result
is not rejected just because the program might be wrong on some other instance.
(The last is in contrast to standard program checking.) We can do batch program
instance checking for any function f whose corresponding graph (the relation
Ry(z,y) = 1iff f(z) = y) has efficient batch verifiers, so that the main technical
problem is the construction of batch verifiers. We do not elaborate here, but
Sect. 3 presents in more detail both the approach and the background, including
explanations of how this differs from other notions like batch program checking
[20]. Now we move on to the design of batch verifiers.

1.3 Batch Verifiers for Modular Exponentiation

We have been able to design some surprisingly efficient batch verifiers for mod-
ular exponentiation. By the approach of Sect. 3, these translate into fast batch
program instance checkers. In particular the amortized (per instance) cost of our
checkers is significantly lower than that of [1].

Let g be a generator of a (cyclic) group G, and let ¢ denote the order of
G. The modular exponentiation function is z + ¢*, where x € Z;. Define the
exponentiation relation EXPqg ,(z,y) = 1iff g° =y, for ¢ € Z; and y € G.

We design batch verifiers for this relation. As per the above, such a verifier is
given a sequence (z1,Y1), ... , (n, yn) and wants to verify that EXPgq 4(z;,y;) =
1foralli =1,...,n. The naive test is to compute g% and test it equals y;, for all
i1 =1,...,n, having cost n exponentiations. We want to do better; multiplication
(the group operation) will be our basic operation by which we shall compute
costs.

Folklore techniques yield a first, basic test that we include for complete-
ness, calling it the RANDOM SUBSETTEST. Our main results are two better
tests, the SMALLEXPONENTSTEST and the BUCKETTEST. They are presented,
with analysis of correctness, in Sect. 5. Their performance is summarized in
Fig. 1, with the naive test listed for comparison. We explain the notation used
in the Fig.: k1 = 1g(|G|); ExpCostg (k1) is the number of multiplications re-
quired to compute an exponentiation a® for a € G and b an integer of k; bits;
and ExpCostf (k1) is the cost of computing s different such exponentiations.
(Obviously ExpCostg (k1) < s - ExpCostg(k1), but there are ways to make it

270 Mihir Bellare, Juan A. Garay, and Tal Rabin

Test No. of multiplications

Naive ExpCost (k1)

RaNDOM SUBSET (RS) nl/2 + ExpCostl, (k1)

SMALL EXPONENTS (SE) I+ nl/2 + ExpCost (k1)

BUCKET ming,>» [#-I -(n+m+ 2™ 'm + ExpCost (k1))

Fig. 1. Performance of algorithms for batch verification of modular exponentiation.
We indicate the number of multiplications each method uses to get error 27'. Here n
is the number of instances to be checked, k1 = 1g(|G|), ! is the security parameter,
ExpCost(k1) is the number of multiplications required to perform a single exponen-
tiation with a ki-bit exponent, and ExpCostf (k1) is the number of multiplications to
perform s such exponentiations. See text for explanations.

strictly less [10,17,9], which is why it is separate parameter. Under the nor-
mal square-and-multiply method, ExpCostq (k1) ~ 1.5k; multiplications in the
group, but again, it could be less [10,17,9]. See Sect. 4 for more information.)
We treat costs of basic operations like exponentiation as a parameter to stress
that our tests can make use of any method for the task. In particular, this ex-
plains why standard methods of speeding up modular exponentiation such as
those mentioned above are not “competitors” of our schemes; rather, our batch
verifiers will always do better by using these methods as subroutines.

Fig. 4 in Sect. 5.4 looks at some example parameter values and computes the
speed-ups. We see where are the cross over points in performance: for small values
of n the SMALLEXPONENTSTEST is better, while for larger values, BUCKETTEST
wins. Notice that even for quite small values of n we start getting appreciable
speed-ups over the naive method, meaning the benefits of batching kick in even
when the number of instances to batch is quite small.

Asymptotically more efficient tests can be constructed by recursively apply-
ing the tests we have presented, but the gains kick in at values of n that seem
too high to be useful, so we don’t discuss this.

Exponentiation with common exponent. Above, we consider exponentiation to
a fixed base g. Another version of the problem is when the exponent is fixed,
and the relation becomes BASEq ,(z,y) = 1 iff ¥ = y in G, where G is some
appropriate underlying group. (This is the kind of verification that is needed
for the RSA function [19], which has the form 2 — 2z with G = Z}.) The
results discussed above do not apply to this version. (Actually the tests are
easily adapted, but the correctness is a different story. It turns out the natural
adaptations don’t work.) In the full paper we suggest a different notion of batch
verification for this case which we call “screening.”

Batch Verification with Applications to Cryptography and Checking 271

1.4 Batch Verification of Degrees of Polynomials

Roughly, the problem of checking the degree of a polynomial is as follows: Given
a set of points, determine whether there exists a polynomial of a certain degree,

which passes through all these points. More formally, let S def (a1, ..., a4) denote
a set of points. We define the relation DEG# (g, ,....3,.)(S) = 1 iff there exists a
polynomial f(z) such that the degree of f(z) is at most ¢, and Vi € {1,..,m},
f(Bi) = a;, assuming that all the computations are carried out in the finite field
F.

A single verification of the degree of one polynomial requires one polynomial
interpolation. Hence, the naive verifier for the batch instance would be very
expensive. The batch verifier which we present allows for the verification of
multiple (exponentially many in k, for a field of size 2¥) polynomials at the same
cost of a single polynomial interpolation. The general idea underlying the batch
verifier is to compute a random linear combination of the shares corresponding
to the various polynomials. This in turn generates a new single instance of the
problem. The correlation is such that, with high probability, if the single instance
is correct then so is the batch instance.

1.5 Applications

Our results for modular exponentiation immediately apply to any discrete log-
based protocol in which discrete exponentiation needs to be verified. In some
cases, we need to tweak the techniques.

DSS signatures [15] are a particularly attractive target for batch verification
because signing is fast and verification is slow. Naccache et al. [18] were able to
give some batch verification algorithms for a slight variant of DSS. In the full
paper we show how to adapt our tests to apply to this variant, and get faster
batch verification algorithms than the ones in [18].

Many popular zero knowledge or witness-hiding proofs are based on discrete
logarithms. For example, discrete exponentiation may be used to implement bit
commitment, and such protocols typically involve a lot of bit commitments. Veri-
fying the de-commitments corresponds to verification of modular exponentiation,
and the use of our batch verifiers can speed up this process.

We also improve the discrete log-based n-party signature/identification pro-
tocols of Brickel et al. [11]. One of the applications of these protocols is telecon-
ferencing, where all the participants are connected to a central facility called a
bridge. The bridge receives signals from the participants, operates on these signal
in an appropriate way, and then broadcasts the result back to the participants.

The problem of checking the degrees of polynomials has wide applications
in the fields of fault-tolerant and secure distributed computation, where some
of the participants may be (maliciously) faulty. Roughly, the ability of the good
players to verify the existence of a valid interpolating polynomial through points
that are distributed among the participants, is a basic building block for Veri-
fiable Secret Sharing (VSS) [12]. VSS, in turn, enables fundamental distributed
primitives such as shared coins, Byzantine agreement, broadcast channel, and

272 Mihir Bellare, Juan A. Garay, and Tal Rabin

secret balloting and voting. In [3] we use the techniques for the batch verification
of this relation to construct a very efficient shared coin tossing scheme.

1.6 Related Work

There has been a lot of previous work on speeding up the modular exponentiation
operation itself, for example by pre-processing (Brickell et al. [10], Lim and
Lee [17] and others) or addition chain heuristics (Bos and Coster [9], Saerbrey
and Dietel [24]). These works provide faster ways to do modular exponentiations.
What we are saying is that performing modular exponentiation is only one way
to perform verification, and if the interest is verification, one can do better than
any of these ways. In particular, our batch verifiers will perform better than the
naive re-computation based verifier, even when the latter uses the best known
exponentiation methods. In fact, better exponentiation methods only make our
batch verifiers even faster, because we use these methods as subroutines.

The idea of batching in cryptography is of course not new. Some previous
instances are Fiat’s batch RSA [14], Naccache et al.’s batch verification for a
variant of DSS [18], and Beller and Yacobi’s batch Diffie-Hellman key agree-
ment [4]. However, there seems to have been no previous systematic look at the
general problem of batch verification for modular exponentiation, and our first
set of results indicate that by putting oneself above specific applications one
can actually find general speed-up tools that apply to them; in particular, we
improve some of the mentioned works.

In the context of program checking, batch program checking was introduced
by Rubinfeld [20]. Here the checker gets many instances z1, ... ,Z,. Again if P
is entirely correct the checker must accept. And if P(x;) # f(x;) for some i the
checker must reject with high probability. Rubinfeld provides batch verifiers for
linear functions. (Specifically, the mod function.) A similar notion is used by
Blum et al. [6] to check programs that handle data structures. In this paper we
introduce the notion of batch instance checking and show how to achieve it using
batch verification.

1.7 Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2 we formalize
the notion of batch verification. Sect. 3 is devoted to our approach to program
checking; this section is somewhat independent from the rest of the paper, so
a reader only interested in the algorithmic techniques can directly proceed to
Sect. 4, where we discuss the costs of multiplication and exponentiation. In
Sect. 5 we present our batch verifiers for modular exponentiation, while in Sect. 6
we treat the batch verification of degrees of polynomials.

2 The Notion of Batch Verification

Here we provide a formal definition of the notion, extending the discussion in
Sect. 1.1. Let R(-) be a boolean relation, meaning R(-) € {0,1}. An instance for

Batch Verification with Applications to Cryptography and Checking 273

the relation is an input inst on which the relation is evaluated. A batch instance
for relation R is a sequence insty, ... ,inst, of instances for R. We say that the
batch instance is correct if R(inst;) = 1 for all 4 = 1,... ,n, and incorrect if
there is some i € {1,... ,n} for which R(inst;) = 0.

Definition 1. A batch verifier for R is a probabilistic algorithm V that takes
as input (possibly a description of R), a batch instance X = (insty, ... ,inst,)
for R, and a security parameter [provided in unary. It satisfies:

(1) If X is correct then V outputs 1.
(2) If X is incorrect then the probability that V outputs 1 is at most 2.

The probability is over the coin tosses of V' only.

Obvious extensions can be made, such as allowing a slight error in the first case.
We stress that if there is even a single 4 for which R(inst;) # 1, the verifier must
reject, except with probability 2.

The naive batch verifier, or naive test, consists of computing R(inst;) for
each i =1,...,n, and checking that each of these n values is 1. But this takes n
computations of R. We want to do better. The goal is to design batch verifiers
for various relations which are efficient compared to the naive verifier. We will
always seek to have a low error € = 27, controlled by a security parameter {. In
practice, setting [to be about 60 will suffice.

The above is a worst-case notion. Sometimes we might be interested in a
more “average case” version. For example, say R = Ry is the graph of some
function f, meaning Rs(z,y) = 1 iff f(x) = y. We might be in a setting where
in each instance inst; = (x;,y;) we know that z; is uniformly distributed. We
still want to check that indeed y; = f(x;). The batch verifier need only work for
instances drawn from a distribution where each z; is chosen independently and
uniformly. This can happen in a cryptographic protocol where one party chooses
Z1,---,%y at random, another party computes yi,--. ,¥yn, and the first party
must check that f(z;) = y; for all i = 1,... ,n. For example, say f(z) = g% is
exponentiation in some group of which g is a generator; then this kind of thing
does arise in zero-knowledge protocols.

In the above it is impossible to fool the batch verifier except with low prob-
ability. We are also interested in a weaker notion under which it is possible, in
principle, to fool the batch verifier, but computationally infeasible to find in-
stances that do so. This notion, called computational batch verification, is again
useful in cryptographic settings where we might not be able to design full-fledged
batch verifiers but are able to do so under the assumption that the underlying
cryptosystem can’t be broken.

Let R = {Ri}4ep be a family of relations over an index set D. Associated
to D is some probability distribution. The batch verifier V (-,-) gets input d, a
batch instance X for R4, and a security parameter /. It outputs a bit V(d, X,1).
We consider an algorithm A that given d, [tries to produce batch instances that
fool V. Let

Pass(4,V,R,l) =Pr[d+ D ; X « A(d,l) : X is incorrect but V(d, X,l) = 1]

274 Mihir Bellare, Juan A. Garay, and Tal Rabin

be the probability that V accepts even though the instance is incorrect. The
probability is over the coins of both A and the test V. We want to say this
probability is small as long as A is not allowed too much computing time.

Definition 2. A computational batch verifier for relation family {R4}4ecp is a
probabilistic algorithm V' that takes as input d, a batch instance X = (insty,

. ,inst,) for R4, and a security parameter [provided in unary. V is said to be
(t, m, €)-reliable if the following are true:

(1) If X is correct then V outputs 1.
(2) Pass(A,V,R,l) < e for any algorithm A running in time at most ¢.

Here t, m, e may be functions of |d|, 1.

3 Batch Program Instance Checking

In this section we introduce the notion of batch instance checking and show
how to achieve it using batch verification. We begin with some background and
motivation, present the approach, and conclude with the formal definition of the
notion.

3.1 Program Checking: Background and issues

Let f be a function and P a program that supposedly computes it. A program
checker, as introduced by Blum and Kannan [7], is a machine C' which takes
input z and has oracle access to P. It calls the program not just on 2 but also
on other points. If P is correct, meaning it correctly computes f at all points,
then C' must accept z, but if P(xz) # f(x) then C must reject £ with high
probability.

Program checking has been extensively investigated, and checkers are now
known for many problems [7, 1,6, 16,8, 21,22, 13]. Checking has also proven very
useful in the design of probabilistic proofs [23,2].

Batch program checking was introduced by Rubinfeld [20]. Here the checker
gets many instances z1,... ,Z,. Again if P is entirely correct the checker must
accept. And if P(z;) # f(z;) for some i the checker must reject with high
probability. Rubinfeld provides batch verifiers for linear functions. (Specifically,
the mod function.) A similar notion is used by Blum et al. [6] to check programs
that handle data structures.

The little-oh constraint. To make checking meaningful, it is required that the
checker be “different” from the program. Blum captured this by asking that the
checker run faster than any algorithm to compute f, formally in time little-oh
of the time of any algorithm for f.

We will see that with our approach, we will use a slow program as a tool to
check a fast one. Nonetheless, the checker will run faster than any program for
f, so that Blum’s constraint will be met.

Batch Verification with Applications to Cryptography and Checking 275

Problems with checking. Program checking is a very attractive notion, and some
very elegant and useful checkers have been designed. Still the notion, or some
current implementations, have some drawbacks that we would like to address:

— Good results can be rejected: Suppose P is correct on some instances and
wrong on others. In such a case, even if P(x) is correct, the checker is allowed
to (and might) reject on input z. This is not a desirable property. It appears
quite plausible, even likely, that we have some heuristic program that is cor-
rect on some but not all of the instances. We would like that whenever P(x)
is correct the checker accepts, else it doesn’t. (As usual it is to be under-
stood that in such statements we mean with high probability in both cases.)
This is to some extent addressed by self-correction [8], but that only works
for problems which have a nice algebraic structure, and needs assumptions
about the fraction of correct instances for a program.

— Checking is slow: Even the best known checkers are relatively costly. For
example, just calling the program twice to check one instance is costly in any
real application, yet checkers typically call it a constant number of times to
just get a constant error probability, meaning that to get error probability
27! the program might be invoked (2(I) times. Batch checking improves on
this to some extent, but, even here, to get error 2=, the mod function checker
of [20] calls the program 2(nl) times for n instances, so that the amortized
cost per instance is {2(1) calls to the program, plus overhead.

What to check? We remain interested in designing checkers for the kinds of
functions for which checkers have been designed in the past. For example, lin-
ear functions. The approach discussed below applies to any function, but to be
concrete we think of f as the modular exponentiation function. This is a par-
ticularly interesting function because of the wide usage in cryptography, so that
fast checkers would be particularly welcome.

3.2 Checking Fast Programs with Slow Ones

Our approach. To introduce our approach let us go back to the basic question.
Let f be the function we want to check, say modular exponentiation. Why do
we want to check a program P for f? Why can’t we just put the burden on
the programmer to get it right? After all modular exponentiation is not that
complicated to code if you use the usual (simple, cubic time) algorithm. It should
not be too hard to get it right.

The issue is that we probably do NOT want to use the usual algorithm. We
want to design a program P that is faster. To achieve this speed it will try to
optimize and cut corners in many ways. For example, it would try heuristics.
These might be complex. Alternatively, it might be implemented in hardware.
Now, we are well justified in being doubtful that the program is right, and asking
about checking.

276 Mihir Bellare, Juan A. Garay, and Tal Rabin

Thus, we conclude that it is reasonable to assume that it is not hard to design
a reliable but slow program Py, that correctly computes f on all instances. Our
problem is that we have a fast but possibly unreliable program P that claims to
compute f, and we want to check it.

Thus, a natural thought is to use Pyew to check P. That is, if P(zx) returns
y, check that Psow () also returns y. Of course this makes no sense. If we were
willing to invest the time to run Py on each instance, we don’t need P anyway.
Formally, we have violated the little-oh property: our checker is not faster than
all programs for f, since it is not faster than Pyoy -

However, what we want is to essentially do the above in a meaningful way.
The answer is batching. However we will not do batch program checking in the
sense of [20]. Instead we will be batch-verifying the outputs of P, using Pyow,
and without invoking P at all.

More precisely, define the relation R, for any inst = (z,y), by R(z,y) = 1 iff
f(z) = y. Let’s assume we could design a batch verifier V for R, in the sense
of Sect. 1.1. (Typically, as in our later designs, V' will make some number of
calls to Pyow-. But MUCH fewer than n calls, since its running time is less than
n times the time to compute R.) Our program checker is for a batch instance
Z1,...,%n. Say we have the outputs y; = P(z1),...,yn = P(x,) of the program,
and want to know if they are correct. We simply run V' on the batch instance
(1,91),--- ,(Tn,yn) and accept if V returns one. The properties of a batch
verifier as defined in Sect. 1.1 tells us the following. If P is correct on all the
instances z1, ... , Tp, then we accept. If P is wrong on any one of these instances
then we reject. Thus, we have a guarantee similar to that of batch program
checking (but a little stronger as we will explain) and at lower cost.

Since V makes some use of Pyo, we view this as using a slow program to
check a fast one.

Features of our approach. We highlight the following benefits of our batch pro-
gram checking approach:

— Instance correctness: In our approach, as long as P is correct on the specific
instances x1, . .. , £, on which we want results, we accept, even if P is wrong
on other instances. (Recall from the above that usual checkers can reject
even when the program is correct on the instance in question, because it is
wrong somewhere else, and this is a drawback.) In this sense we have more
a notion of “program instance checking.”

— Speed: In our approach, the program is called only on the original instances,
so the number of program calls, amortized, is just one! Thus, we only need
to worry about the overhead. However, with good batch verifiers (such as
we will later design), this can be significantly smaller than the total running
time of the program on the n calls. Thus the amortized additional cost of
our checker is like o(1) program calls, and this is to achieve low error, not
just constant error. This is very fast.

— Off-line checking: Our checking can be done off-line as in [6]. Thus, for ex-
ample, we can use (slow) software to check (fast) hardware.

Batch Verification with Applications to Cryptography and Checking 277

Of course batching carries with it some issues too. When an error is detected
in a batch instance (z1,%1),-- - (®n,yn) we know that some (x;,y;) is incorrect
but we don’t know which. There are several ways to compensate for this. First,
we expect to be in settings where errors are rare. (As bugs are discovered they
are fixed, so we expect the quality of P to keep improving.) In some cases it is
reasonable to discard the entire batch instance. (In cryptographic settings, we
are often just trying to exponentiate random numbers, and can throw away one
batch and try another.) Alternatively, one can figure out the bad instance off
line; this may be acceptable if it doesn’t have to be done too often.

3.3 Definition

We conclude by summarizing the formal definition of our notion of batch program
instance checking. Similarly to relations, a batch instance for a (not necessarily
boolean) function f is simply a sequence X = x1,... ,z, of points in its domain.
A program P is correct on X if P(z;) = f(x;) for alli =1,... ,n, and incorrect
if there is some i € {1,...,n} such that P(z;) # f(z;). If f is a function we let
Ry be its graph, namely the relation R¢(z,y) = 1if f(z) =y, and 0 otherwise.
Notice that P is correct on X iff (x1, P(z1)),. .. , (¥n, P(25)) is a correct instance
of the batch verification problem for R;.

Definition 3. A batch program instance checker for f is a probabilistic oracle
algorithm CT that takes as input (possibly a description of f), a batch instance
X = (x1,...,x,) for f, and a security parameter | provided in unary. It satisfies:

(1) If P is correct on X then C¥ outputs 1.
(2) If Pis incorrect on X then the probability that C¥ outputs 1 is at most 2.

We wish to design such batch program instance checkers which have a very low
complexity and make only marginally more than n oracle calls to the program.
As indicated above, this is easily done for a function f if we have available batch
verifiers for Ry, so we concentrate on getting efficient batch verifiers.

4 Costs of Multiplication and Exponentiation

Let G be a (multiplicative) group. Many of our algorithms are in cryptographic
groups like Z}, or subgroups thereof (IV could be composite or prime). We mea-
sure cost in terms of the number of group operations, here multiplications.

Cost of one exponentiation. Given a € G and an integer b, the standard square-
and-multiply method computes a’® € G at a cost of 1.5/b| multiplications on
the average. However, there are methods to do better. For example, using the
windowing method based on addition chains [9,24], the cost can be reduced
to about 1.2|b|; pre-computation methods have been proposed to reduce the
number of multiplications further at the expense of storage for the pre-computed
values [10,17] (a range of values can be obtained here; we give some numerical

278 Mihir Bellare, Juan A. Garay, and Tal Rabin

examples in Sect. 5.4). Accordingly it is best to treat the cost of exponentiation
as a parameter. We let ExpCost (k1) denote the time to compute a’ in group
G when k; = |b|, and express the costs of our algorithms in terms of this.

Multiple exponentiations. Suppose we need to compute a’, ..., ab", exponen-

tiations in a common base a but with changing exponents. Say each exponent
is t bits long. We can certainly do this with n - ExpCosts(t) multiplications.
However, it is possible to do better, via the techniques of [10,17], because in this
case the pre-computation can be done on-line and still yield an overall savings.
Accordingly, we treat the cost of this operation as a parameter too, denoting it
ExpCost(t).

Computing the product of powers. We now present a general algorithm we will
use in Sect. 5 as a subroutine. Suppose ay, ... ,a, € G. Suppose by,...,b, are
integers in the range 0,...,2' — 1 < |G|. We write them all as strings of some
length ¢, so that b; = b;[¢] ... b;[1]. The problem is to compute the product a =
T, a;’", the operations being in G. The naive way to do this is to compute ¢; =
a;’" for i = 1,...,n and then compute a = [[}-, ¢;. This takes ExpCostg(t) +
n — 1 multiplications, where ks is the size of the representation of an element
of G. (Using square-and-multiply exponentiation, for example, this works out to
3ntks/2 + n — 1 multiplications; with a faster exponentiation it may be a bit
less.)

However, drawing on some ideas from [10], we can do better, as shown in
Fig. 2. This algorithm performs ¢ multiplications in the outer loop and nt/2
multiplications on the average for the inner loop. Hence, for computing y we get
a total of ¢ 4+ nt/2 multiplications.

GIVEN: a1,... ,an € G; b, ... ,b, integers in the range 0,... ,2" — 1 < |G]|.
b;
COMPUTE: a =[], a;*.
Algorithm FastMult((a1,b2),... , (an,bn))
a:=1;
for j =t downto 1 do
for ¢ =1 to n do if b;[j] =1 then a :=a - a;;
2
a:=a
return a

Fig. 2. Fast algorithm for computing the product of powers.

5 Batch Verification for Modular Exponentiation

Let G be a group, and let ¢ = |G| be the order of G. Let g be a primitive element
of G. Hence, for each y € G there is a unique ¢ € Z; such that y = g*. This i is

Batch Verification with Applications to Cryptography and Checking 279

the discrete logarithm of y to the base g and is denoted log, (y). Define relation
EXPg 4(z,y) to be true iff g* = y. (Equivalently, z = log,(y).) We let k1 denote
the length (number of bits) of ¢, and k2 the length of g.

We are interested in groups arising in cryptography for which the discrete
log problem (computing log,(y) given y) is hard. This is not an assumption
needed for our results (in particular we do not use any hardness assumptions),
it is rather the motivation. In this category what is important is that ko is quite
large, about k2 = 1024. In comparing complexities we think of ky as about this
much.

With G, g fixed we want to construct fast batch verifiers for the relation
EXPg,4. We begin with a simple test which, although better than the naive
method, is not so efficient.

5.1 Random Subset Test

The first thing that one might think of is to compute 2 = "7 ; ; mod gand y =
[T, yi (the multiplications are in G) and check that g% = y. However it is easy
to see this doesn’t work: for example, the batch instance (z + «, ¢%), (z — «, g*)
passes the test for any a € Z,, but is clearly not a correct instance when o # 0. A
natural fix that comes to mind is to do the above test on a random subset of the
instances: pick a random subset S of {1,...,n}, compute z =), o x; mod q
and y = [[;cq¥: and check that g* = y. (The idea is that randomizing “splits”
any “bad pairs” such as those of the example above.) We call this the AToMIC
RANDOM SUBSET TEST.

This test seems simple enough that it might be viewed as folklore. Its analysis
is quite simple, and we skip the proofs but state the results, for comparison with
our later better methods.

Lemma 4. Given a group G and a generator g of G, suppose (x1,y1),---,
(Tn,yn) is an incorrect batch instance of the batch verification problem for
EXPg,4(-,-). Then the AToMiC RANDOM SUBSET TEST accepts (1,y1),-.- »
(Tn,Yn) with probability at most 1/2. O

This lemma tells us that the test does work, but not too well, in the sense that
the error is not small, but a constant, namely 1/2. (Moreover, one can show
that this analysis is best possible.) So to lower the error to the desired 2~ we
must repeat the atomic test independently I times. We call this the RANDOM
SUBSETTEST. See Fig. 3. However, the repetition is costly: the total cost is now
nl/2+ ExpCostl, (k) multiplications. This is not so good, and, in many practical
instances may even be worse than the naive test, for example if n < [. (Since [
should be at least 60 this is not unlikely.)

The conclusion is that repeating many times some atomic test which itself
has constant error can be costly even if the atomic test is efficient. Thus, in what
follows we will look for ways to directly get low error. First, lets summarize the
results we just discussed in a theorem.

280 Mihir Bellare, Juan A. Garay, and Tal Rabin

Theorem 5. Given a group G, o generator g of G, the RANDOM SUBSET TEST
is a batch verifier for the relation EXPg ,(-,-) with cost nl/2 + ExpCostl; (k)
multiplications, where k1 = [1g(|G])]. O

5.2 The Small Exponents Test

We can view the AToMIC RANDOM SUBSET TEST in a different way. Namely,
pick bits s1, ... , s, € {0,1} at random, let z = }_" | s;z; andy = [[;—, ¥, and
check that g* = y. (This corresponds to choosing the set S = {i : s; =1}.) We
know this test has error 1/2. The idea to get lower error is to choose s, ... , s,
from a larger domain, say t bit strings for some ¢ > 1. There are now two things
to ask: whether this does help lower the error faster, and, if so, at what rate as
a function of t; and then as we increase ¢, how performance is impacted. Let’s
look at the latter first.

If we can keep t small, then we have only a single exponentiation to a large
(ie. k1-bit) exponent, as compared to [of them in the random subset test. That’s
where we expect the main performance gain. But now we have added n new
exponentiations. However, to a smaller exponent. Thus, the question is how
large t has to be to get the desired error of 2.

We use some group theory to show that the tradeoff between the length ¢ of
the s;’s and the error is about as good as we could hope: setting ¢t = [yields the
desired error 2~!. The corresponding test is the SMALL EXPONENTS (SE) TEST
and is depicted in Fig. 3. The following theorem summarizes its properties and
provides the analysis proving our claim about the error.

Theorem 6. Given a group G of prime order q and a generator g of G, then
SMALLEXPONENTSTEST és a batch verifier for the relation EXPg 4(-,-) with cost
Il +n(1+1/2) + ExpCostq(k1) multiplications, where k1 = |q|.

Proof. First let us see how to get the claim about the performance. Instead
of computing y;* individually for each value of ¢ and then multiplying these
values, we compute the product y = H?Zl yi* directly and more efficiently as
y = FastMult((y1,51),--- , (Un, 8n)), the algorithm being that of Sect. 4. Since
S1,... ,8, were random [-bit strings the cost is [+ nl/2 multiplications on the
average. Computing z takes n multiplications. Finally, there is a single exponen-
tiation to the power z, giving the total number of multiplications stated in the
theorem.

That the test always accepts when the input is correct is clear. Now we prove
the soundness. Let the input (z1,y1),... , (¥n,¥yn) be incorrect. Let z; = log, (y:)
fori=1,...,n.Fori=1,... ,nlet a; = z; — . Since the input is incorrect
there is an i such that «; # 0. For notational simplicity we may assume (wlog)
that this is true for ¢ = 1. (NOTE: This does not mean we are assuming a; =0
for j > 1. There may be many j > 1 for which a; # 0.) Now suppose the test
accepts on a particular choice of sq,...,s,. Then

s1Z1+-+sn

g o=yt ey (1)

Batch Verification with Applications to Cryptography and Checking 281

GIVEN: g a generator of G, and (z1,%1),-.. , (Tn,Yn) With z; € Z,
and y; € G. Also a security parameter /.

CHECK: That Vi € {1,... ,n} : y; = g**.

— Random Subset (RS) Test: Repeat the following atomic test, indepen-
dently [times, and accept iff all sub-tests accept:
Atomic RANDOM SUBSET TEST:
(1) Foreachi=1,...,n pick b; € {0,1} at random
(2) LetS={i:b;=1}
(3) Computex =3, gwimodgq, and y = [],csv:
(4) If g° = y then accept, else reject.

— Small Exponents (SE) Test:
(1) Pick s1,...,s, € {0,1} at random
(2) Compute z =37 z;s;modgq, and y =[], v
(3) If g° =y then accept, else reject.

— Bucket Test: Takes an additional parameter m > 2. Set M = 2. Repeat
the following atomic test, independently [I/(m — 1)] times, and accept iff all
sub-tests accept:

Atomic BUCKET TEST:

(1) Foreachi=1,...,npickt; € {1,..., M} at random

(2) Foreachj=1,... Mlet Bj={i:t;=j}

(3) Foreach j =1,...,Mlet ¢; =)
Hiij Yi

(4) Run, on the instance (c1,d1),. .. ,(cm,dum), the Small Exponent
Test with security parameter set to m.

ie; Ti mod g, and d; =

Fig. 3. Batch verification algorithms for exponentiation with a common base.

But the right hand side is also equal to gslz’1+"'+s"””;. Therefore, we get
gormittnen — gsisitetentl, op gsioatetsnan — 1 Since g is a primitive
element of the group, it must be that sja; + - - -+ spa, = 0 mod g. But a; # 0.
Since ¢ is prime, a3 has an inverse (; satisfying a;3; = 1 mod ¢. Thus, we can
write

51 = —f1-(s2a2 +--- + span) mod ¢ . (2)

This means that for any fixed so, ... , sy, there is exactly one (and hence at most
one) choice of 51 € {0,1} (namely that of Equation 2) for which Equation 1
is true. So for fixed sso,..., sy, if we draw s; at random the probability that
Equation 1 is true is at most 27!. Hence the same is true if we draw all of

282 Mihir Bellare, Juan A. Garay, and Tal Rabin

$1,--- ,8y independently at random. So the probability that the test accepts is
at most 2. O

Remark 7. We stress that this result holds in a group of prime order. We are
not working in Z; (which has order ¢ — 1) but in a group G' which has order
g a prime. (If the group does not have prime order, it is easy to find examples
to show that our tests don’t work.) In practice this is not really a restriction.
As is standard in many schemes, we can work in an appropriate subgroup of Z;
where p is a prime such that ¢ divides p — 1. In fact, prime order groups seem
superior to plain integers modulo a prime in many ways. The discrete logarithm
problem seems harder there, and they also have nice algebraic properties which
many schemes exploit to their advantage.

5.3 The Bucket Test

We saw that the SMALLEXPONENTSTEST was quite efficient, especially for an
n that was not too large. We now present another test that does even better
for large n. Our BUCKETTEST, shown in Fig. 3, repeats m times an ATOMIC
BUCKET TEST for some parameter m to be determined. In its first stage, which is
steps (1)—(3) of the description, the atomic test forms M “buckets” By,... , B.
For each i it picks at random one of the M buckets, and “puts” the pair (z;,y;)
in this bucket. (The value ¢; in the test description chooses the bucket for i.) The
z; values of pairs falling in a particular bucket are added while the corresponding
y; values are multiplied; this yields the values c;,d; for j = 1,... , M specified
in the description. The first part of the analysis below shows that if there had
been some i for which g% # y; then except with quite small probability (27™)
there is a “bad bucket,” namely one for which g% # d;.

Thus we are reduced to another instance of the same batch verification prob-
lem with a smaller instance size M. Namely, given (¢1,d1), ... ,(car, dpr) we need
to check that g% =d; for all j =1,... , M. The desired error is 27™.

We can use the SE test to solve the smaller problem as has been described
in Fig. 3. (Alternatively, we could recursively apply the bucket test, bottoming
out the recursion with a use of the SE test after a while. This seems to help, yet
for n so large that it doesn’t really matter in practice. Thus, we shall continue
our analysis under the assumption that the smaller sized problem is solved using
SE.) This yields a test depending on a parameter m. Finally, we would optimize
to choose the best value of m. Note that until these choices are made we don’t
have a concrete test but rather a framework which can yield many possible tests.
To enable us to make the best choices we now provide the analysis of the AToMIC
BUCKET TEST and BUCKETTEST with a given value of the parameter m, and
evaluate the performance as a function of the performance of the inner test,
which is SE. Later we can optimize.

Lemma 8. Suppose G is a group of prime order p, and g is a generator of G.
Suppose (x1,Y1),--- 5 (Tn,Yn) s an incorrect batch instance of the batch verifi-
cation problem for EXP,(-,-). Then the AroMic BUCKET TEST with parameter
m accepts (x1,Y1), - -, (Tn,yn) with probability at most 2-(m—1)

Batch Verification with Applications to Cryptography and Checking 283

Proof. As in the proof of Thm. 6, let z; = log,(y;) and o; = z; — z; for i =
1,...,n. We may assume a1 # 0. Say that a bucket B; is good (1 < j < M) if
9% =d;. Let r be the probability, over the choice of 1, ... ,t,, that all buckets
By,... ,By are good. We claim that r < 1/M =2"™.

To see this, first note that if a bucket B; is good then Ziij a; = 0mod gq.
Now assume ts, ... ,t, have been chosen, so that (22,¥2),... , (Zn,yn) have been
allotted their buckets. Let B} = {i > 1 : t; = j }— these are the current buckets.
Say B is good if ZiEB; a; =0mod ¢. If all of By, ..., B}, are good, then after
x7 is assigned, there is at least one bad bucket, because a; # 0. This means that
there exists a j such that B} is bad. (This doesn’t mean it’s the only one, but
if there are more bad buckets the test will fail. Thus we can assume that there
is a single j.) The probability that By,... , Ba are good after x1 is thrown in is
at most the probability that z; falls in bucket j, which is 1/M. So r < 1/M.

By assumption the test in Step (4) has error at most 2™ so the total error
of the atomic bucket test is 2 -2~ = 2—(m—1),]

Regarding performance, it takes n multiplications to generate the buckets and
the smaller instance. To evaluate the smaller instance using SE with parameters
2™ m, |q|, k> takes m+2™m/2+ 2™ + ExpCosts(|q|) multiplications by Thm. 6.
This process is repeated [I/(m —1)] times. When we run the test, we choose the
optimal value of m, meaning that which minimizes the cost. Thus we have the
following.

Theorem 9. Given a group G of prime order q, and a generator g of G, the
BUCKETTEST (with m set to the optimal value) is a batch verifier for the relation
EXPg,q(-,-) with cost

m>2

min { [ﬁ-‘ c(n+m+2m"m+2) + EXpCostG(kl))}

multiplications, where ki = |q|. O

To minimize analytically we would set m = log(n + k1) — loglog(n + k1), but in
practice it is better to work with the above formula and find the best value of
m by search. This is what is done in the next section.

5.4 Performance Analysis

We look at the actual performance of the batch verification tests of Fig. 3. For
a given value of n (the number of instances we are simultaneously verifying),
exactly how much work does each test need, and which is the best? In partic-
ular we don’t want to end up with results that are purely asymptotic, ie. the
improvement is only for very large n. For n = 5 or n = 10, what happens? And
how does it grow?

To measure this, we count exactly the number of (k2-bit) multiplications
used by each test. These numbers are also tabulated in Fig. 1. Let us fix some
reasonable values for k; and the security parameter [: set k; = 1024, and [= 60.

284 Mihir Bellare, Juan A. Garay, and Tal Rabin

n No. of multiplications used by different tests
Naive |[RANDOM SUBSET|SMALL EXPONENTS|BUCKET
5 1K 12K 04K 43K
10 2K 125K 0.6 K 44K
50 || 10K 135K 18K 5K
100 || 20K 15K 3.2K 57K
200 || 40K 18K 6.2K 7.1K
500 || 100K 27K 15.2K 10.7K
1,000{| 200 K 42K 30.2K 16.5K
5,000{|1000 K 162K 150K 56 K

Fig. 4. Example: For increasing values of n, we list the number of multiplications (in
thousands, rounded up) for 1024-bit exponents for each method to verify n exponen-
tiations with error probability 27%°. We assume that a single exponentiation requires
200 multiplications [17]. The lowest number for each n is underlined: notice how it is
not always via the same test!

(Meaning the exponentiation is for 1024 bit moduli, and the error probability
will be 2760.) For various values of the number n of terms in the batch instance,
we compare the number of multiplications each test takes. We compare it to the
results of [10,17] as they seem harder to beat.! These results are tabulated in
Fig. 4. We stress that these savings occur also if other methods for computing
exponentiations are used.

We find that the speedups provided by our tests are real. First, observe that
even for small values of n, we can do much better than naive: at n = 5 the SE
test is a factor of 2 better than naive. Also observe that which test is better
depends on the value of n. (In the figure, we underline the best for each value of
n.) As we expected, the RS test is actually worse than naive for small n. Until
n about 200, the SMALLEXPONENTSTEST test is the best. From then on, the
BUCKETTEST performs better. Note that the factor of improvement increases:
at n = 200 we can do about 6 times better than naive (using SE); at n = 5000,
about 17 times better (using BUCKET).

Another relevant value for k; is 160. Suppose n = 40, and one would be happy
with [= 40. Using the methods of [17] would require about 1700 multiplications.

! Lim and Lee [17] present different configurations to perform exponentiation with pre-
computation that trade-off the number of multiplications with storage. The estimate
of 200 multiplications corresponds to an intermediate configuration, with an accept-
able storage requirement (300 pre-computed values). Their fastest configuration—
with a considerable storage blow-up—uses =~ 100 multiplications. Still in this case
our tests perform consistently better.

Batch Verification with Applications to Cryptography and Checking 285

On the other hand, SMALLEXPONENTSTEST uses 1080, and using plain square-
and-multiply. Combining SMALLEXPONENTSTEST with pre-processing with rea-
sonable storage brings the number of multiplications below 900.

In other words, using these tests can bring sizeable speedups in any setting
where we need to perform over five modular exponentiations simultaneously, and
as m increases the savings get even larger.

6 Batch Verification of Degree of Polynomials

The problem of checking the degree of a polynomial is as follows: Given a set of
points, determine whether there exists a polynomial of a certain degree, which

passes through all these points. More formally, let S ef (a1, ..., 0u) denote a
set of points. We define the relation DEG x4 (s,,... 8..)(S) = 1 iff there exists a
polynomial f(z) such that the degree of f(x) is at most ¢, and Vi € {1,..,m},
f(B:) = a;, assuming that all the computations are carried out in the finite field
F.

Let the batch instance of this problem be S1, ..., Sy, where S; = (@ 1, ..., ®i,m).
The batch instance is correct if DEG#y (g,,....8,,)(S:) = 1 for all i = 1,...,n;
incorrect otherwise.

The relation DEG can be evaluated by taking t + 1 values from the set and
interpolating a polynomial f(z) through them. This defines a polynomial of de-
gree at most ¢. Then verify that all the remaining points are on the graph of
this polynomial. Thus, a single verification of the degree requires a polynomial
interpolation. Hence, the naive verifier for the batch instance would be highly
expensive. The batch verifier which we present here carries out a single interpo-
lation in a field of size |F|, and achieves a probability of error less than %I The
general idea is that a random linear combination of the shares will be computed.
This in return will generate a new single instance of DEG. The correlation will
be such that, with high probability, if the single instance is correct then so is
the batch instance. Hence, we can solve the batch instance computing a sin-
gle polynomial interpolation, contrasting O(m?n) multiplications with O(mn)
multiplications.

We will be working over a finite field F whose size will be denoted by p
(not necessarily a prime). 2> We will be measuring the computational effort of
the players executing a protocol by the number of multiplications that they
are required to perform. Note that the size of the field is of relevance, as the
naive multiplication in a field of size 2% takes O(k2) steps. We note that the
fields in which the computations are carried out can be specially constructed in
order to multiply faster. The test (protocol), which we call RANDOM LINEAR
COMBINATIONTEST, appears in Fig. 5.

2 At this point we shall assume that the instances are computed in the same field F
as the new instance that we generate. Later we shall show how to dispense with this
assumption.

286 Mihir Bellare, Juan A. Garay, and Tal Rabin

GIVEN: S1, cery Sn where Sl = (Oﬁi,l, cery Oti,m); ﬂl, ceny ﬂn;
security parameter /; value ¢.

CHECK: That Vi € {1,...,n} : 3f;(z) such that deg(f;) < t, and
fl(ﬂl) = Qi,1, fl(ﬂ‘rn) = Qi,m .

Random Linear Combination Test:

(1) Pick r er F

(2) Compute ~; def r"agn + .o oy,
(* This can be efficiently computed as
(- ((raim + iy (n-1))r + Qi (n—2)) -)1 + @i1)r. *)

(3) If DEG s+ (gy,....8m) (71, -y ¥Ym) = 1, then output “correct,”
else output “incorrect.”

Fig. 5. Batch verification algorithm for checking the degree of polynomials.

Theorem 10. Assume 3j such that for all polynomials f;(x) which satisfy that
Vi e {1,...,m}, fi(B:) = o, it holds that the degree of f;(x) is greater than t.
Then RANDOM LINEARCOMBINATIONTEST is a batch verifier for the relation
DEG# 4 (g,.....8m)(-) which runs in time O(mn) and has an error probability of
at most %.

Notation. Given a polynomial f;(z) = apmx™ + ... + a1x + ag, where a,, # 0,

def
Fi(@)|ZE apa™ + .+ ag 2t

If m < t, then f;(z)[**' = 0.

Proof. In order for RANDOM LINEARCOMBINATIONTEST to output “correct,”
it must be the case that DEGr s (g, ,....3,.) (715 -, ¥Ym) = 1. Namely, there exists
a polynomial F(z) of degree at most ¢ which satisfies all the values in S. Let
fi(z) be the polynomial interpolated by the set S;; it might be that deg(f;) > t.
By definition, the polynomial F(z) = Y"1 r' fi(z). As deg(F) < t, it holds that
S rifi(z)|*! must be equal to 0. This is an equation of degree n and hence
has at most n roots. In order for RANDOM LINEARCOMBINATIONTEST to fail,
namely, to output “correct” when in fact the instance is incorrect, r must be
one of the roots of the equation. However, this can happen with probability at
most %.

Each linear combination of the shares requires O(mn) multiplications, and
the final interpolation requires O(m?) multiplications. O

Batch Verification with Applications to Cryptography and Checking 287

Batch verification of partial definition of polynomials. Consider the following
variant of the DEG#; (g,,....8,.) problem: Given the set S as above and a value
t, there is an additional value s, and the requirement is that there exists a
polynomial f(z) of degree at most ¢ such that for all but s of the values f(3;) =
a;. As this is in essence an error correcting scheme, some limitations exist on
the value of r. The best known practical solution to this variation is given by
Berlekamp and Welch [5]. It requires solving a linear equation system of size
m. Hence, again, using a naive batch verifier to check a batch instance would
be highly inefficient. RANDOM LINEARCOMBINATIONTEST can be modified to
solve this variant efficiently as well.

Different fields. It might be the case that the original instances were all computed
in a field F of size p. Yet, % is not deemed a small-enough probability of error.
Therefore, we create an extension field F’ of the original field, containing F as
a subfield. For example, view F as the base field and let F' = F[z]/ < r(z) >
for some irreducible polynomial of the right degree (namely, of a degree big
enough to make F' of the size we want). Thus, if F = GF(2%) we will get
F' = GF(2¥"), for some k' > k, and the former is a subfield of the latter. It must
be noted that if the extension field is considerably larger than the original field,
then the computations in the extension field are more expensive. Thus, in this
case there is a trade-off between using the sophisticated batch verifier and using
the naive verifier.

References

1. L. Adleman and K. Kompella. Fast Checkers for Cryptography. In A. J. Menezes
and S. Vanstone, editors, Advances in Cryptology — Crypto ’90, pages 515-529,
Berlin, 1990. Springer-Verlag. Lecture Notes in Computer Science No. 537.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and hardness of approximation problems. In Proc. 38rd Annual Symposium on
Foundations of Computer Science, pages 14-23. IEEE, 1992.

3. M. Bellare, J. Garay, and T. Rabin. Distributed Pseudo-Random Bit Generators—
A New Way to Speed-Up Shared Coin Tossing. In Proceedings Fifteenth Annual
Symposium on Principles of Distributed Computing, pages 191-200. ACM, 1996.

4. M. Beller and Y. Yacobi. Batch Diffie-Hellman Key Agreement Systems and their
Application to Portable Communications. In R. Rueppel, editor, Advances in
Cryptology — Eurocrypt ’92, pages 208-220, Berlin, 1992. Springer-Verlag. Lecture
Notes in Computer Science No. 658.

5. E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent
4,633,470.

6. M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the Correct-
ness of Memories. In Proceeding 82nd Annual Symposium on the Foundations of
Computer Science, pages 90-99. IEEE, 1991.

7. M. Blum and S. Kannan. Designing Programs that Check their Work. In Pro-
ceedings 21st Annual Symposium on the Theory of Computing, pages 86-97. ACM,
1989.

288

8.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Mihir Bellare, Juan A. Garay, and Tal Rabin

M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with Applications
to Numerical Problems. Journal of Computer and System Sciences, 47:549-595,
1993.

J. Bos and M. Coster. Addition Chain Heuristics. In Advances in Cryptology—
Proceedings of Crypto 89, Lecture Notes in Computer Science Vol. 658, pages 400—
407. Springer-Verlag, 1989.

E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast Exponentiation with
Precomputation. In R. Rueppel, editor, Advances in Cryptology — Eurocrypt 92,
pages 200-207, Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science
No. 658.

E. Brickell, P. Lee, and Y. Yacobi. Secure Audio Teleconference. In Advances in
Cryptology— Proceedings of Crypto 87, Lecture Notes in Computer Science Vol. 293,
C. Pomerance editor, pages 418-426. Springer-Verlag, 1987.

B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing
and Achieving Simultaneity in the Presence of Faults. In Proceeding 26th Annual
Symposium on the Foundations of Computer Science, pages 383-395. IEEE, 1985.
F. Ergun, S. Ravi Kumar, and R. Rubinfeld. Approximate Checking of Polynomials
and Functional Equations. In Proc. 87th Annual Symposium on Foundations of
Computer Science, pages 592-601. IEEE, 1996.

A. Fiat. Batch RSA. Journal of Cryptology, 10(2):75-88, 1997.

National Institute for Standards and Technology. Digital Signature Standard
(DSS). Technical Report 169, August 30 1991.

P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proc. Twenty
Third Annual ACM Symposium on Theory of Computing, pages 32-42. ACM, 1991.
C.H. Lim and P.J. Lee. More Flexible Exponentiation with Precomputation. In
Y. Desmedyt, editor, Advances in Cryptology — Crypto ’94, pages 95-107, Berlin,
1994. Springer-Verlag. Lecture Notes in Computer Science No. 839.

D. Naccache, D. M’Rahi, S. Vaudenay, and D. Raphaeli. Can D.S.A be improved?
Complexity trade-offs with the digital signature standard. In A. De Santis, editor,
Advances in Cryptology — Eurocrypt ’94, pages 77-85, Berlin, 1994. Springer-
Verlag. Lecture Notes in Computer Science No. 950.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21:120-126, 1978.
R. Rubinfeld. Batch Checking with Applications to Linear Functions. Information
Processing Letters, 42:77-80, 1992.

R. Rubinfeld. On the Robustness of Functional Equations. In Proc. 35th Annual
Symposium on Foundations of Computer Science, pages 2-13. IEEE, 1994.

R. Rubinfeld. Designing Checkers for Programs that Run in Parallel. Algorithmica,
15(4):287-301, 1996.

R. Rubinfeld and M. Sudan. Robust Characterizations of Polynomials with Appli-
cations to Program Testing. SIAM Journal on Computing, 25(2):252-271, 1996.
J. Sauerbrey and A. Dietel. Resource requirements for the application of addition
chains modulo exponentiation. In Advances in Cryptology— Eurorypt 92, Lecture
Notes in Computer Science Vol. 658. Springer-Verlag, 1992.

