
6.897: Advanced Data Structures Spring 2003

Project Presentations — May 7, 12, and 14, 2003

Prof. Erik Demaine Scribes: Ray Jones and Mihai Pǎtraşcu

1 Classical Data Structures

1.1 Partial sums data structures — Mihai Pǎtraşcu

The problem is to maintain an array of size n, containing b-bit integers (b ≥ lgn), subject

to the following operations:

update(k,∆) replaces A[k]← A[k] + ∆. Here ∆ must be a δ-bit integer, where δ ≤ b is a

parameter of the problem.

sum(k) returns the partial sum
∑k

i=1 A[i].

select(σ) returns the index i such that sum(i− 1) < σ ≤ sum(i).

Several new results were presented. First, an upper bound of Θ(1 + lg n/ lg(b/δ)) was

obtained for the RAM model. Second, a matching lower bound on the cell-probe complexity

of update and sum was derived. Finally, a tight lower bound of Ω(lg n) was obtained for

the group model of computation.

Open problems include proving a tight bound on the complexity of sequences of update and

select (without the sum operation), and analyzing the off-line problem.

Update: This work will appear in the 15th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2004.

1.2 Nearest neighbor data structures — Ray Jones, Mihai Pǎtraşcu

This project investigated the predecessor problem in an algebraic model of computation

with random access. It is known that interpolation search achieves an expected O(lg lg n)

bound if elements are drawn independently from a uniform distribution. Interpolation

search trees attain this bound for the dynamic problem, but impose additional restrictions,

1

such as deletes being uniformly random. It can be questioned whether such ideal distribu-

tions appear in practice. It would be desirable to obtain good bounds in terms of a more

measurable parameter; one such parameter is the spread factor D, defined as the ratio

between the maximum and minimum difference between consecutive elements.

The main result of this project is an O(lgD · lg lg n) bound for insert, delete, and prede-

cessor queries. The key idea is to generate random samples from a distribution defined in

terms of the input values. These samples are stored in an interpolation search tree; regular

binary search trees hold the values between consecutive samples. If the number of sam-

ples is appropriately chosen, the binary search trees have polylogarithmic size with high

probability.

It would be interesting to analyze the performance of interpolation search in terms of D.

It should also be investigated whether regular interpolation search can be used instead of

interpolation search trees.

Update: This work (with an improved bound of O(lgD)) will appear in the 15th Annual

ACM-SIAM Symposium on Discrete Algorithms, 2004.

1.3 Faster hashing — Vladimir Kiriansky

Hashing is one of the oldest and most important data-structural problems. The collision-

chaining technique yields good (optimal) average-case performance, and represents a good

reference point for evaluating the performance of alternative implementations. In many

contexts, however, we want constant running times in the worst case for lookups. This

is achieved for the static case by the classical Fredman-Komlós-Szemerédi perfect hashing

scheme, which was later generalized to the dynamic case by Dietzfelbinger et al. Un-

fortunately, perfect hashing has rather large constant hidden by the asymptotic analysis,

especially in the space consumption.

The cuckoo hashing of Pagh and Rodler is another scheme that achieves constant worst-

case bounds for lookups; in fact, the lookup routine makes only two memory probes. The

space consumption is much lower, roughly 2n. The space consumption can be reduced

even further by d-ary cuckoo hashing, but at the price of increasing the number of memory

probes needed during a lookup.

However, experimental evidence suggests that cache performance is more important than

the number of memory probes. In this context, it was proposed that every element in the

2

hash table be replaced by a group of k elements that fits in a cache line. This reduces the

number of misses in primary search location, and does not decrease the number of cache

lines that must be loaded. Experimental evidence found that this scheme is effective. An

interesting open problem is to give some theoretical results along these lines.

1.4 Offline linear search — Ilya Baran, Denis Cebikins, Lev Teytelman

Self-organizing linear search is a classic computer-science problem; several data structures

for the online version were discussed in class. The offline version of the problem has also been

considered. It is known that the problem is NP-hard. Furthermore, a 1.6-approximation

algorithm can be obtained by derandomizing the COMB algorithm, which is the best known

algorithm for the online problem. This project attempted to give a better approximation

algorithm.

It was noted that, in the offline case, there exists an optimal solution using no free swaps.

Projective algorithms were discussed and it was remarked that the projective optimum only

gives a good approximation of the real optimum for lists of 3 elements. A new algorithm

for the offline case was presented. It was shown that it is always as least as good as move-

to-front, but unfortunately it only gives a factor 2 approximation in the worst case.

The main open problem is to find an approximation algorithm that improves the 1.6 bound.

2 Text Indexing Data Structures

2.1 String data structures — Alexandr Andoni and Cristian Cadar

While suffix trees give an optimal solution for static text indexing, no such solution is known

for the case when characters can be inserted and deleted from the text dynamically. Three

solutions for this problem were proposed, having different running times in terms of |T |, |P |,

and k (the number of updates seen so far):

1. The first solution maintains a static suffix tree and uses exhaustive search to find

additional matches straddling update points. This gives O(lg k) updates and O(k ·P)

searches.

2. The second solution achieves O(T 2/3) updates, and O(P 2) searches. This is done by

maintaining a tree of prefixes and a tree of suffixes, in conjunction with a table that

3

gives matches defined by two nodes in these trees. The whole structure is rebuilt when

k = Θ(n1/3).

3. The third solution achieves O(T 2/3) updates and O(P lg k) searches, by augmenting

the nodes in the suffix and prefix trees with some additional links.

2.2 Dynamic text indexing — Hans Robertson

The first part of this project concerned text indexing data structures for dynamic texts. It

was shown that if the length of searched strings is limited to m, where m is a parameter

given in advance, then searches can be supported in optimal time, and updates in O(m)

time. The idea is to divide the text in blocks of size 2m that overlap adjacent blocks in m

positions. All suffixes of these blocks are maintained in a common suffix tree.

The second part of the project concerned the document-listing problem, which was recently

solved optimally for the static case by Muthukrishnan. For this problem, the allowable

operations are inserting and deleting a whole document. The general approach was to

augment the suffix tree with lists of distinct documents under each node, and additional

information to help navigate these lists. The bounds achieved are good, but probably not

optimal (by a logarithmic factor). Improving these bounds is an interesting open problem.

2.3 Fast and small text indexing — Lance Anderson and Wayland Ni

Due to the high volume of data that must be handled by static text indexing data structures,

space consumption becomes an important aspect. We would like a data structure that can

search for a pattern in O(P) time, and yet occupy only O(T) bits (for the binary alphabet

case). It was shown by Demaine and López-Ortiz that Ω(T) bits are required for the index,

in addition to the actual text. Some known data structures achieve this space bound, but

don’t quite match the time bound; others give O(P) search time but use superlinear space.

The project concerned finding a data structure that achieves both bounds. The proposed

solution was to construct a suffix tree over chunks of size lg T , and recurse to handle these

chunks. Unfortunately, this attempt fails to meet the established goals, so the problem of

finding an optimal text indexing data structure remains open.

4

3 Computational Geometry Data Structures

3.1 Nearest-neighbor data structures — Gautam Jayaraman

Many algorithms in machine learning need to construct a neighborhood graph, and thus

need a nearest-neighbor data structure. Usually, such a data structure has to handle points

from a low-dimensional manifold embedded in a high-dimensional space. Karger and Ruhl

presented such a data structure, whose expected performance is logarithmic in the number

of points, and exponential in the intrinsic dimensionality. This represents a significant

improvement compared to schemes which are exponential in the extrinsic dimension. Their

data structure is randomized with a high (constant) probability of correctness, and uses

“finger lists” of sample points around each point in the data set.

An experimental analysis of this scheme was presented. The evidence suggested that the

proposed dimension of the finger lists was unnecessarily high. It was demonstrated that

smaller finger lists yield significantly better performance. At the same time, the proba-

bility of correctness does not decrease significantly, since it quickly enters a linear region

as finger lists increase. An open problem is to give a theoretical analysis confirming these

observations.

3.2 Higher-dimensional van Emde Boas — Sid Sen and Shantonu Sen

The project was to define a 2D predecessor/successor structure in a fixed, two-dimensional

universe. There are several ways to define successor in higher dimensions. For example,

a particular direction might be chosen, and the successor of a point would be defined as

the next point along a ray in that direction. Successor could also be defined as the nearest

neighbor, in which case the two closest points are each other’s successor.

This project considers a compromise between the ray successor and the nearest neighbor,

in which a cone is defined at each point, in a particular direction and with a given angle.

The successor within a cone is the closest (under the Euclidean metric) point in the cone.

There are real world problems that behave like this, such as limited viewing angle of human

vision.

A specific instance of this problem is when the query point is on the main diagonal (through

the origin, with a slope of 1), and the search direction along the diagonal. For this case,

the other points can be projected onto the main diagonal and a 1D vEB search performed.

The answer is approximate, with error 1/ cos(α/2), where α is the angle of the cone. This

5

error comes from using perpendicular projection to sort points, rather than true Euclidean

distance. In the worst case, all of the points might lie outside of the cone, but project to

near the query point. In this case, the successor query takes O(n) time.

The limited case can be extended to a more general case, in which the query point is

allowed to be anywhere but the query direction is still 45◦. Points are projected to the

main diagonal, and vEB searches performed on overlapping groups. Within a group, a

second vEB is performed in the perpendicular direction. Again, the worst case time might

be O(n) if all points lie just outside the cone.

This case can be generalized to use an arbitrary query direction. However, the number of

points along a an arbitrary diagonal of slope m is pU , where p = m
√

m2+1
m2+1

and U is the

universe size. To perform vEB searches on the projected diagonal, the granularity of the

universe may have to be increased by a factor of p, which might be quite large.

Runtimes are poor in the worst case, but can be improved by searching denser data sets,

limiting the distance of the search so that far away points are not considered, and iteratively

updating the search based on failures in the successor search (i.e., points that lie outside

the cone).

3.3 Proximate point location — Jeff Lindy

The problem this project addresses is querying a point set for whether a particular point

is in that set or not. In addition, a goal is to have the queries have the dynamic finger

property, so that the time for searching for point i and then point j is O(lg |d(i, j)|), where

d(i, j) is the difference in “rank” between the two points.

In 1D, rank can be defined by sorting the points. However, for 2D the definition is not as

obvious.

A method by Demaine, Iacono, and Langerman defines rank difference as the number of

points lying within a convex shape containing both points. In addition, the shape must

contain a disk around the second point, and an arc through the second point centered on

the first.

Given this metric, a structure with the dynamic finger property can be defined. Each point

splits space into six triangles with a vertex at that point and an angle of 60◦. Six lists are

stored with each point, linking it to “stepping stone” points in a particular direction, chosen

such that the metric between the central point and the stepping stone grows exponentially.

6

Search proceeds by jumping from stepping stone to stepping stone.

An open problem is whether a similar method works in 3D. The direct extension is not

possible, because the 2D version relies on equilateral triangles tiling the plane, which is

not the case for regular tetrahedra in 3-space. One possibility is to use cubes to define the

metric, rather than tetrahedra.

3.4 Planar point location with fusion trees — Glenn Eguchi, Hana Kim

The problem being attacked in this project is planar point location: preprocess a polygonal

planar subdivision with n edges to support queries of, given a point q, determine which

polygon contains q.

The problem can be broken down into locating which of n vertical slabs contains the point

and then which polygon (clipped to that slab) contains the point. Slabs are defined such

that slab boundaries occur at (and only at) vertices of the subdivision. There are n slabs,

in this case, with all clipped polygons having three or four edges. Building a fusion tree on

the x-coordinates of the slab gives O(lgn
lg lgn) query time for the vertical slab. The problem

then becomes searching for which horizontal trapezoid contains the point.

The first method of performing this search is to again build a fusion tree on horizontal

sub-slabs, where a slab is defined for each crossing of an edge with the boundaries between

vertical slabs. Locating a point requires first finding the horizontal slab containing the

point, then which polygon overlapping the sub-slab contains it. Unfortunately, in the worst

case this could be all of the polygons.

This can be addressed by rotating the slabs, then building horizontal slabs within them.

The rotation is chosen to make the median slope of the crossing lines horizontal. This

approach can be applied recursively. If edge slopes are uniformly distributed, then after

only a few applications all horizontal slabs will overlap a constant number of polygons.

A different approach is to perform finer subdivisions in the first step, when defining the

vertical slabs. If a particular boundary for a vertical slab would cause two polygons in the

slab to overlap in their horizontal projection, then a vertical subdivision where one edge’s

endpoint projects to the other edge produces horizontal sub-slabs that contain no more than

two Repeatedly applying this procedure gives a subdivision into vertical and horizontal slabs

with no sub-slabs containing more than two polygons. However, the number of subdivisions

might be as high as u, the universe size.

7

3.5 Faster planar point location — Alan Leung

This project was concerned with planar point location in a vertical slab with n non-crossing

edges. The method uses a divide-and-conquer approach to find which sub-polygon the query

point lies in. Empirical tests suggest that the time to locate a point in n subdivisions is

O(lgn lg lg u).

4 Distributed Data Structures

4.1 Amorphous data structures — Jake Beal

This project was concerned with implementing a dictionary (a.k.a. association memory),

on an amorphous computer network. Such a network can support spatially local communi-

cation, is only partially synchronous, and allows for point and region failures. The proposed

distributed data structure requires O(d) time and messages per operation (where d is the

diameter), requires a background communication density of O(lg d) and guarantees a maxi-

mum load per area of O(dε ·n/A). Furthermore, the data structure has good failure bounds.

The proposed data structure was simulated with positive results.

4.2 Distributed data structures — Ben Leong

This project was also about distributed dictionaries, but on more common network of com-

puters. It was argued that the routing path length for a query can be logarithmic, even

if each node has a constant number of neighbors, which was an improvement over existing

schemes. A simple idea is to organize computers in a tree with constant branching factor;

unfortunately, this leads to exponentially higher traffic at higher levels and is therefore im-

practical. The proposed solution was to upgrade and downgrade nodes in the tree according

to the hit rate of the data they hold. Experimental evidence suggested the routing length

grows logarithmically with the number of nodes, and the traffic experienced by nodes higher

in the tree is comparable to that at lower levels.

4.3 Distributed data structures — Rui Fan and Sayan Mitra

This project gives a general transformation from a distributed data structure to a fault-

tolerant distributed data structure that is guaranteed to be failsafe. The model assumes

8

that there is an upper bound f on the number of computers that can fail in one tick;

furthermore, the data structure consists of “nodes” containing independent information.

The strategy is to encode each node using an erasure code, and divide it on 2f computers.

During each tick, 3f random computers are probed; if one has failed, the data can still be

recovered from adjacent computers, with high probability. To guarantee successful recovery

in all cases, a more costly failsafe procedure is employed. Unfortunately, this scheme puts

some information regarding a node on each of the n computers, which increases the cost of

writes to n messages. Since all other bounds are polylogarithmic, improving writes remains

the most significant direction for future research.

5 RAMBO Data Structures

5.1 RAMBO data structures — Loizos Michael

The project was concerned with speeding up dynamic prefix problems using a RAMBO. A

dynamic prefix problem asks to maintain an array A[1..n] under element update, and prefix

queries, which return the composition of A[1..k] under a monoid operation for a given value

of k.

To support interesting operations efficiently, an extension to the RAMBO architecture was

proposed: in addition to the usual registers which represent root-to-leaf paths, the machine

can also read dual registers, which are the “complement” of a normal path. Using this

architecture, it was shown how to support prefix boolean and and parity in constant time

per operation (sometimes requiring precomputed tables in RAM). Some possible extensions

to multiple dimensions were discussed, as well as possible applications to image processing.

5.2 Higher-dimensional RAMBO data structures — Chris Collier

This project’s goal is to build multidimensional RAMBO data structures to solve the

nearest-neighbor problem. RAMBO structures can be used to enhance searches in the

k-nearest neighbor problem, via projection search. Sorting time is decreased to O(dn), and

query time to O(d lg u+ k).

RAMBO structures can also be used to create faster multidimensional range trees. In the

usual multidimensional range query tree, a range tree is built for the first dimension. Each

node in the tree links to a range tree in the next dimension for the points lying within the

9

range summarized by that node. This leads to a O(lgd n+k) query time to return k points.

In the Yggdrasil extension, we can represent ranges with two leaves. An O(1) query on the

prefixes of the leaves summarizes the range. Again, for each node, we can store a recursive

structure on the points within that range. This gives a O(d+ k) query time.

An interesting open problem is to extend these sorts of structures to kd-trees.

5.3 RAMBO data structures — Jonathan Brunsman and Sonia Garg

The project was concerned with reducing memory consumption using the RAMBO archi-

tecture. For the predecessor problem, the known constant time solution of Brodnik et al.

uses Θ(u) space; this can be quite bad if n is significantly smaller than u. It was remarked

that the RAMBO memory contains many zero bits in this case, and that space can be

reduced by not maintaining intervals of zeroes on the same level of the tree. Unfortunately,

such a scheme leads to a very unstructured memory and slow updates. Another idea was

to improve the space consumption of fusion trees, by not storing zero bits generated by

the sketch function. Unfortunately, this only leads to a marginal improvement, and creates

significant complications in hardware.

An interesting open problem is to improve the space required by the Brodnik et al. data

structure, or prove a lower bound.

6 Applications of Data Structures

6.1 XML-related data structures — David Malan

The XML document format has caused significant excitement and is becoming an important

standard for document storage and exchange. Investigating the performance of processing

XML documents is therefore a well-motivated problem.

One inefficiency arises from the fact that a document has to be read and processed com-

pletely, even though typical queries can be answered by examining only a small portion

of the file. It was proposed that a summary structure be added to the beginning of the

document to make it possible to read only the interesting portions of the file. The pro-

posed structure was the balanced-parentheses representation of the document we discussed

in class, which makes it possible to find the starting position of interesting fields efficiently.

Experimental results confirmed that this idea is effective.

10

Another inefficiency in answering queries using standard approaches is that a lot of edges

have to be traversed to get to interesting nodes, even though these nodes are typically

cousins on the same level. A “summary DOM” approach was proposed, which mitigated

this deficiency by adding level links to the classical representation. Experimental findings

supported this idea.

An interesting challenge for research is how to represent the DOM efficiently in a cache-

oblivious setting. This becomes important considering the large volume of information

usually stored in this format.

6.2 Financial data structures — William Kwong

Detecting statistical arbitrage is an important problem for real-time trading systems. The

problem is complicated by the high volume of data, and the fact that the evolution of prices

is best described as a continuous rather than discrete signal.

It was proposed that kinetic data structures, normally studied in the context of compu-

tational geometry, can be used for real-time trading systems. The idea is to assign a

“certificate” to each piece of information that gives an expiration time. Based on an as-

sumed continuity in the prices, the certificates form a guarantee that recent changes do not

significantly alter the result computed by the algorithm. Whenever a certificate expires,

more recent information can be used to recalculate relevant values. It was argued that this

general approach can be used to improve the running time of financial algorithms under

normal operating conditions.

6.3 Minimum spanning hypertrees — Percy Liang

This project was about finding the minimum spanning hypertree in a given hypergraph,

which has applications to machine learning. Unfortunately, the problem of determining the

minimum spanning hypertree is NP-hard. Several approximation and heuristic algorithms

are known, and this project focused on the data structure needed for their efficient im-

plementation. This work lead to a generalization of the classic union-find data structure.

A good implementation was presented. One contribution of the project was the develop-

ment of a framework in which new approximation algorithms for the minimum spanning

hypertree can be benchmarked.

11

