
6.897: Advanced Data Structures Spring 2003

Lecture 9 — March 12, 2003

Prof. Erik Demaine Scribe: A. Andoni, C. Cadar

1 Overview

In the last lecture we discussed the unified property and the unified structure. We started to
prove that the unified structure has the unified property, by describing how the search and the add
operations work.

In this lecture we will re-iterate the main properties of the unified structure and we will finish
analyzing the add operation in this data structure. Next, we will cover key-independent optimality,
Wilbur’s second lower bound, and Munro’s offline binary search tree.

2 Unified Structure

We begin by re-iterating the main characteristics of the unified structure.

2.1 Description

The unified structure is a collection of k trees and k queues, where k ∼ lg lgn and n is the number
of elements in the data structure. The trees are doubly exponentially increasing in size, except
for the last tree which contains all n elements. Each queue stores the “childless” nodes of the
corresponding tree. A graphical representation of the unified structure can be found in Figure 1.

...

...

�������
���

�	�

 ���

� �� � � �

 ���
 �������

���

� �����

Figure 1: The Unified Structure.

2.2 Search Operation

The search operation, already discussed during the last lecture, is the following:

1

Search(x)

• search in T1, T2, . . . until we find some node y in Tl within 2 · 22
l

of x;

• add x to Tl with the same parent as y;

• add x to Tl−1 with the same parent as x in Tl;

• . . .

• add x to Tl with the same parent as x in T2.

We saw how to do the first operation in O(2l) time.

2.3 Add Operation

The add operation requires adding an element x to the tree Ti with the same parent as some other
element y. We distinguish here two main cases: when x is within 22

i+1

of the parent of y, and when
x is at a bigger distance from the parent of y.

The first case, when x is within 22
i+1

of the parent of y, can be easily treated in the following way:

Add(x) to Ti with the same parent as y
• insert x into Ti and enqueue it into Qi;

• link x to parent(y) and maybe remove parent(y) from Qi+1;

• dequeue z from Qi and delete it from Ti;

• unlink z from parent(z), maybe enqueue parent(z) into Qi+1.

The second case, when x is not within 22
i+1

of the parent of y, requires more work. In this case, x
is within 22

i

of y, which in turn is within 22
i+1

of parent(y). This situation is shown graphically in
Figure 2.

���������

	 �
���

� � ����������������

Figure 2: x is not within 22
i+1

of the parent of y.

Next, we remark that every node in the unified structure in tree Ti+1 stores its children in the four
quarters of size 22

i+1

/2, as shown in Figure 3 for the parent of y.

�

��� �"!$#% � &�')(+*�,-#% !/.�01� ,2#% 3 (+4��5!/.6#%
7
8�9;:+<5=+77
8�9;:+<5=+77
8�9;:+<5=+77
8�9;:+<5=+7

>@?BA�C�D�E�FG��H

Figure 3: The four quarters of the children of the node parent(y).

2

With these observation, we can describe how the add operation works when x is not within 22i+1

of the parent of y:

Add(x) to Ti with the same parent as y

• add z = parent(y)− 22
i+1

to Ti+1 with the same parent as parent(y);

• move the first quarter of parent(y)’s children to third quarter of z’s children;

• remove z from Qi+1 and maybe enqueue parent(y) into Qi+1;

• add x to Ti with parent z.

2.4 Analysis of Add Operation

We would like to prove that the add operation works in O(2l) amortized time. In order to prove
this, we define the following potential function:

Φ = c · E,

where c is a constant and E is the number of extreme children, i.e., the number of children in the
first or last quarter of the nodes in the structure.

Again, we divide our analysis in two cases. The first case, in which x is within 22
i+1

of the parent
of y, is very simple to analyze. In this case, the add operation takes O(2l) time (the time to add

a node into a tree of size 22
l

). As for the potential increase, O(1) potential is added per level,
and so there is a total O(l) potential increase. Thus, the amortized time complexity of the search
operation is O(2l).

The analysis of the second case, when x is not within 22
i+1

of the parent of y, is a little bit more
complicated. First of all, let’s assume that x < parent(y). The other case, when x > parent(y),
can be treated symmetrically.

First, let’s analyze the change of potential, by following the evolution of z’s children. When z is
first added, z (from a smaller tree) is the only child. Next, each new child is added within 2 · 22i

of
the previous child. So, in order to get a new child at distance greater than 22

i+1

of z, we must have
added at least 22

i+1

/ (2 · 22
i

) = 22
i

/2 children before this child, and thus at least 22
i

/4 children in
the first quarter of z.

Because all the children of z in the first quarter are going into the third quarter of some other
node, we can conclude that the potential loss is at least c · 22

i

/4. On the other hand, the cost
for the recursive call to operation add is O(2i+1), which is dominated for c sufficiently large. The
amortized cost is thus at most zero.

Detail: The n elements of the unified structure are kept in sorted order in an array, and each
node in a tree keeps the index in this array. Alternatively, the array can be replaced by a finger
search tree, which is a level-linked 2-3-tree, as shown in Figure 4.

3

Figure 4: Level-linked 2-3-tree.

3 Key-Independent Optimality

The concept of key-independent optimality was developed in [1].

The main assumption here is that the keys are “meaningless”. We can understand this concept as
taking a uniformly random permutation π of the n keys. With this concept in mind, we define the
key-independent dynamic optimal as being the expected value of dynamic optimum on a randomly
permutated sequence, E[dynamic OPT(π(sequence))].

Theorem: Let s = x1, x2, . . . , xm be the request sequence. Then, key-independent OPT(s) is
Θ(

∑m
i=1
lgwi), where wi is the number of distinct elements accessed since the last access to xi, also

called the working-set number.

Example: Splay trees, the working-set structure, and the unified structure all have this property.
Splay trees are truly key-independent optimal, because they operate in the search-tree model.

We won’t give the proof of this theorem in lecture, but we will describe Wilbur’s (second) lower
bound, which is used in the proof.

4 Wilbur’s (second) lower bound

Wilbur’s second lower bound was formulated in [3].

Let x1, x2, . . . , xm be the request sequence and consider the amortized cost of xj . For this, look at
where xj fits among the subsequence xi, xi+1, . . . , xj−1, for all i from j−1 down to 1. For each i, let’s
say xj fits between ai and bi. Then, as i decreases, ai will increase and bi will decrease. Wilbur’s
(second) lower bound says that the amortized cost of xj is at least the number of alternations
between ai increasing and bj decreasing.

Example: n = 9, m = 9
Let the sequence be 3 7 1 9 5 2 8 4 6.
Then, for j = 9, we have the sequence of alternations shown in Figure 5.

4

Figure 5

This lower bound holds for any data structure in the search-tree model.

OPEN: Is dynamic OPT = O(Wilbur’s lower bound)?

OPEN: How do the dynamic OPT, Wilbur’s lower bound, and splay trees relate?

5 Munro’s Offline Binary Search Trees

Munro’s offline binary search trees were presented in [2].

In Munro’s offline binary search trees, we perform the following additional operations. Upon search
for an element, we look at the path from the root to the element as shown in Figure 6. Then, we
re-arrange this structure as a binary search tree, without entering the side subtrees, to minimize
the depth of the next-requested node.

Figure 6

We consider two cases. If the next-requested node is on the path, then we put it at root. Otherwise,
if the next-requested node is in a subtree, we have one of the two subcases shown in Figure 7. In
this situation, if the next-requested node is in the minimum or the maximum subtree, we make it
the child of the root.

5

Figure 7

Next, subject to this constraint (minimizing the depth of the next-requested node), we try to
minimize the depth of the second-next-requested node. In particular, if this element is less than or
equal to x, then we put x at root. If however this element is greater than or equal to y, then we
put y at the root. Otherwise, if the element is between x and y, we do nothing.

Next, subject to these first two constraints, we try to minimize the depth of the third-next-requested
node, then the depth of the fourth-next-requested node, and so on.

OPEN: Is Munro’s method = O(1) × dynamic OPT?

OPEN: Is Munro’s method ≥ O(1) + dynamic OPT?

OPEN: Are splay trees = O(Munro’s method)?

References

[1] John Iacono, “Key independent optimality”, Proceedings of the 13th Annual International Sym-

posium on Algorithms and Computation, LNCS 2518, November 2002, pages 211–218.

[2] J. Ian Munro, “On the Competitiveness of Linear Search”, Proceedings of the 8th European

Symposium on Algorithms, LNCS 1879, September 2000, pages 338–345.

[3] Robert E. Wilbur, “Lower Bounds for Accessing Binary Search Trees with Rotations”, SIAM

Journal on Computing, 18(1):56–67, February 1989.

6

