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1 Overview

Today we will first see a file-maintenance algorithm that allows random inserts and deletes in
O(lg2 n) time in a sequential file taking linear space.

Then we will move onto algorithms that care about memory hierarchy. In modern computers,
memory is not flat. It has multiple levels of progressively slower and larger memory. Thus it is not
equally costly to access all items in memory. For example, if you store a matrix in row-order, then
scanning in row-order is much faster than scanning in column order.

Our goal to get models that capture this behavior and analyze why some algorithms do so well.
We will see two memory hierarchy models that will be used later to analyze various algorithms and
data structures.

The first algorithm we see is an ordered-file-maintainence algorithm which can be implemented in
a file system for random insertions and deletions in a file. This basic algorithm will be later used
as a black box for more complicated algorithms.

2 Ordered-File Maintenance [IKR81, BDFC00]

2.1 Problem Statement

Given n elements in some order, store them in that order in an array of size O(n). The following
operations must be supported:

• Insert an element between 2 given elements

• Delete any given element.

2.2 Näıve Solution

Store all elements in an array with no gaps, as shown on Figure 1. For insert and delete, we have
to move all elements after the position where the insert or delete took place.

Cost: O(n) in the worst case for both inserts and deletes.
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Figure 1: Insertion into an array

2.3 Better Solution

In the following sections we will discuss a better solution for this problem with cost O(lg2 n)
amortized for both inserts and deletes. It is possible to get O(lg2 n) worst case [Wil92, BCD+02],
but the analysis is more complex and is not covered in this lecture. It is conjectured that these
bounds are the best possible with linear space; see [DSZ94] for a matching lower bound but in a
weak model.

2.4 Rough Idea

The idea is to keep gaps in the array so that the elements can usually be inserted without shifting the
entire array. These gaps should be roughly evenly distributed and should remain evenly distributed
in spite of insertions and deletions. So the rough idea of the algorithm is to ensure that, on insertion,
the area around the element that was inserted doesn’t get too crowded. If it does, then we find
an interval around it that has enough blank spaces in total, and then redistribute the blank spaces
evenly in the interval. The interval is grown exponentially, so that there have to be many inserts
before it gets full again and thus we can charge to these inserts.

2.5 Tree View

For analysis purposes, we look at the conceptual tree view of the array. Divide the array into
chunks of Θ(lg n) slots. These chunks are the leaves of the binary tree.

The height of the tree is h = lg n− lg lg n. Conceptually, each node of the tree represents an interval
which is the combination of its children’s intervals. The size of the interval of the leaves is Ω(lg n)
and as we walk up the tree the size of the interval grows exponentially. Thus when any interval is
too full, we try to find an ancestor which is not too full (on average) and redistribute the spaces.
If we reach the root of the tree and the interval is still full, we double the size of the array and
redistribute the gaps.

2.6 Density

The density of a node represents how full or how empty the interval represented by that node is:

Definition 1 (Density). Density(node) = number of elements present in interval
number of slots in interval

2



Figure 2: Conceptual Tree Representation

Density is always a constant between 0 (completely empty) and 1 (completely full).

2.6.1 Density Constraints

The density constraints define the lower and upper bounds on the density.

Node thresholds at depth d:
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Figure 3: Density Constraints

Notice that the constraints are tighter as we go higher up the tree. In particular, at depth 0 (the
root), 1/2 ≤ density ≤ 3/4 and, at depth h (the leaves), 1/4 ≤ density ≤ 1.

These constraints are not always satisfied for all nodes. They are violated occasionally. But if we
ever see the violation, we fix it. If the violation is never seen, then it doesn’t effect the algorithm.

The density constraints can be tuned to take less space. With these constraints, the array size is
about twice the number of elements. This constant factor can be made arbitrarily small (1 + ε) by
changing the constraints.

2.7 Algorithm

To insert a new element x between y and z given pointers to y and z:

Insert(x, y, z):
insert x into the same chunk as y (or z) using näıve insertion
node ← leaf node representing chunk
if density(node) /∈ thresholds(node):

while density(node) /∈ thresholds(node):
node ← parent(node)

rebalance node by evenly redistributing all elements in the interval

Delete(x) is exactly the same except for the first step, which is to delete the element x from the
chunk containing it using näıve deletion.

2.8 Description

It is guaranteed that there is at least one gap. So inserting into the leaf always succeeds in Θ(lg n)
time by the näıve shifting algorithm. Now, if the leaf is within threshold, we are done. If the leaf
is outside threshold, we do not have enough gaps within this interval, so we need to find a larger
interval with more gaps. When we reach a level at which there are enough gaps, i.e., at which the
interval is within threshold, we redistribute the gaps evenly in that entire interval. Because the
parents have tighter constraints than their children, all children will also now have enough gaps
(be within threshold). The cost of redistribution can be amortized by charging to the inserts and
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deletes that brought a child node outside threshold. If we reach the root without finding any node
within threshold, we rebuild the whole tree.

2.9 Analysis

The important observation is that thresholds get weaker as we go deeper in the tree. The conse-
quence of this observation is simple but powerful.

Whenever we rebalance a node, it is because one if its children was outside of the thresholds, while
the node itself is within thresholds. After rebalancing children, densities will also be within limits.
Indeed children will have the same density as parent (disregarding rounding), but the childrens’
constraints are weaker. Therefore children will be farther within density thresholds.

We can calculate by how much they will be within thresholds as follows. At adjacent levels, d
differs by 1. Given that parent density is within its threshold, the density of the child is within its
threshold by at least a factor of 1/(4h) = Θ(1/ lg n).

Of course, this observation doesn’t mean much for n = 1 element because of rounding. We should
rather start with a large enough base case to get the absolute number of elements (the ratio times
the size) at least 1. Therefore we need to start with an interval of size Θ(lgn). This is the only
reason we need the chunks at the leaves to be of this size.

Before the parent needs to be rebalanced again, one of its children’s density must be outside of its
threshold. That will happen only after Ω(capacity/ lgn) inserts or deletes in the subtree. Capacity
here is the capacity of the child, or that of the parent for that matter, because they are equal up
to a constant factor (capacity(parent) = Θ(capacity(child))).

2.9.1 Amortized Bound

At first, the amortized bound seems to be only O(lgn), but we shouldn’t forget that we need to
mark all ancestor subtrees whenever we insert a node.

The amortized cost of inserting or deleting an element into one subtree is O(lgn). The depth of
the tree is h = Θ(lgn). Whenever we insert an element, each of the O(h) ancestor subtrees charges
us. The total amortized number of moves is thus O(lg2 n).

3 Related Problems

We will now look at two related problems in which we can apply this data structure for ordered-file
maintenance.

3.1 Order Queries in a List

The Order-Maintenance Problem is to maintain a list representing a total order, subject to the
following operations:
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Tag space Time per update

Θ(n) or Θ(n lgn) O(lg2 n)

Θ(n2) or Θ(n1+ε) O(lgn)
Θ(2n) O(1)

Table 1: Tag space vs update time tradeoffs

Updates: exactly the same update operations as in the ordered file maintenance problem.

• Insert (X,Y, Z): Insert a new element X between two given elements

• Delete (X): Remove an element X from the list

Query: Order (X,Y ): Given pointers to two nodes, determine whether X precedes Y in the list.

We will show a solution with using O(1) amortized time per operation. In particular, other than
amortization, updates take constant time just like in a linked-list representation.

3.2 List-Labeling Problem

A harder problem is to maintain a linked list with regard to same updates as above, and in addition
store a tag with each node. The following operations must be supported:

Updates: • Insert (X,Y, Z): Insert a new element X between two given elements

• Delete (X): Remove an element X from the list.

Query: Order queries should be answered correctly by direct comparison of tags.

3.3 Tag Space vs. Update Time

We should maintain monotonically ordered tags for each node in the list, such that the order of
the tags matches the order of the nodes. (If we had real numbers as tags they would have served
great for this purpose.) Further, if our tags fit in a constant number of words, order queries can be
answered in O(1) time by comparing tags.

Table 1 summarizes several results on this problem.

We can use ordered-file maintenance to keep an ordered array of O(n) elements where we use the
indices of the elements in that array as their labels. Whenever we re-arrange items we also need to
update their labels. Thus we get updates in O(lg2 n) amortized time, and the tag space is linear,
so queries are O(1).

By modification to thresholds, we can similarly obtain an O(lgn) amortized solution given Θ(n1+ε)
tag space. (Note that, even with O(n lgn) tag space, the update time is still O(lg2 n); we need the
polynomial tag space to get O(lgn).)

Lastly, for the trivial solution with exponential tag space but constant update time, we just add
an extra bit for each node to subdivide the tag space.
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3.4 Goal

We want to solve the order-maintenance problem (not list labeling) with O(1) amortized update
and query time using only the O(lg2 n) data structure for list labeling.

3.5 Indirection

Indirection can help us solve order queries using “implicit” tags. We start with the almost-working
list-labeling black box and add indirection.

list labeling on n

lg2 n
blocks

Θ(lg2 n) Θ(lg2 n) · · · Θ(lg2 n)

Figure 4: Indirection using a list labeling black box

The top-level nodes give labels for comparison of bottom-level blocks. We use an ordered-file-
maintenance structure as a black box for the top-level nodes. The indirection delays updates to the
top structure by at least Θ(lg2 n). The bottom-level blocks must have size Θ(lg2 n). The question
now is how to represent the blocks?

Question: Can you use the exponential representation on the blocks?

Answer: No, it will result in super linear space requirement, since 2lg
2
n > nO(1). (Another useful

inequality to know is lgO(1) n < 2
√

lgn < nΘ(1).)

A better solution is to use B-trees on the Θ(lg2 n) block elements. We label each edge in the B-tree
according to its index from the parent node. The bottom-level tag of an element in the leaves is
the concatenation of the edge labels along the root-to-leaf path. The overall tag of an element is
the concatenation of its top-level tag and bottom-level tag. We need O(lgn) tag bits for the top
level and O(lg lg2 n) = O(lg lgn) bits for the bottom. The tags will thus fit in O(1) words for
comparison.

With B-trees, we can afford to relabel all descendants of a node whenever it is touched. For example,
after an insert in the 2-4 tree in the following figure, the labels of the right-hand descendants have
to have part of their label updated from 0 to 1.

100

Figure 5: Descendant relabeling on insert in a 2-4-tree

In this way, we can achieve amortized O(1) update cost. It is also possible to achieve worst-case
O(1) update cost [DS87, BCD+02].
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Question: What about using indirection again on the lg2 n blocks?

Answer: Yes, we can also use the Θ(n2) tag-space representation at the second level, which will
give us O((lg lgn)2) update cost, hence we need the bottom-level blocks to have at least (lg lgn)2

elements. Even if the bottom-level blocks store Θ(lg n) elements, we can afford the O(2n) tag-space
representation and we achieved again an amortized O(1) cost.

list labeling on
n

lg2 n
blocks

Θ(lg2 n)

Θ(lgn) · · · Θ(lg n)
· · ·

Θ(lg2 n)

Θ(lg n) · · · Θ(lgn)

Figure 6: Double indirection using a list-labeling black box

Alternative indirection: Another approach would be to use as a black box the O(n2) tag-space
list-labeling structure with update of O(lgn). Thus we only need to take care of bottom-level blocks
of size Θ(lg n). The O(2n) representation on the bottom level gives us linear space.

list labeling on
n

lgn blocks

Θ(lgn) Θ(lg n) · · · Θ(lgn)

Figure 7: Indirection using a Θ(n2) list labeling black box

4 Memory-Hierarchy Models

Most modern computers do not have a flat memory. They have a memory hierarchy consisting of
multiple levels of memory with each level getting progressively slower and larger.

4.1 External-Memory Model [AV88]

In this model, we only consider a two-level memory hierarchy, on the assumption that the last
two levels dominate the total cost. The memory closer to the CPU is called the cache and the
level further away is the disk. The cache has size M divided into blocks of size B. Thus there are
M/B blocks. The disk is conceptually infinite memory, again with block size B. The CPU always
accesses the cache. If the requested item is not in the cache, then the block containing the item
is brought in from the disk into the cache. If the cache is full, some block is thrown out to make
space for the new block. The primary cost model is that we only charge for the memory transfers
between the disk and the cache.
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Figure 8: 2-level Memory Heirarchy

The transfers between disk and cache are always in terms of blocks. For these block transfers to be
useful, we need locality of reference. For example, it is much cheaper to access the data sequentially
and not randomly.

4.1.1 Examples

• Scanning N elements in order costs dN/Be memory transfers.1

• Searching in a B-tree with branching factor equal to the block size B costs O(logB N) memory
transfers. This is because we can transfer one entire node in one memory transfer and thus
the number of memory transfers is equal to the height of the tree.

This bound is also information-theoretically optimal: you need lgN bits of information to
find the index, and in each memory transfer we learn lgB bits (where the query element
fits among the B read elements), so we need lgN

lgB = logB N memory transfers to search.
Thus the B-tree can be tuned to give optimal performance if M and B are known in the
external-memory model.

4.2 Cache-Oblivious Model [FLPR99]

This model is similar to the external-memory model except that the algorithm is not aware of the
values of M and B and is not allowed to find it by sampling or any other techniques. The algorithm
should work exactly the same for all values of M and B.

1Note the historical notation of external-memory sizes with CAPS.
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4.2.1 Advantages

• Self-tuning. The algorithm doesn’t have to be tuned for various machines, with respect to B
and M .

• Works well with multiple level of hierarchy. For example, consider the case of B-trees, if we
have multiple levels of hierarchy, each with different M and B. To be optimal at all levels, we
would have to nest B-trees inside every node of the B-trees recursively. On the other hand,
if our algorithm does not depend on M and B, and is optimal for all M and B, then the
analysis applies equally well to all levels of memory, so the algorithm is optimal on multilevel
memory hierarchies.

• Clean and easy to use. Algorithms are phrased as if they are on the RAM; only the analysis
is aware of a cache.

• It is often possible!

4.2.2 Examples

• Scanning N elements costs at most dN/Be + 1 memory transfers. There is an extra +1 to
account for possible misalignment with the blocks, which we cannot predict.

• We’ll see that it is also possible to have optimal performance in B-trees without knowing B!
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