
6.897: Advanced Data Structures Spring 2003

Lecture 13 (Compression) — April 9, 2003

Prof. Erik Demaine Scribes: Percy Liang, David Malan

1 Overview

The motivation for compression is the following: a sender S wishes to transmit some data—a string
s of letters—through a channel to a receiver R. S encodes s into some code c (hopefully smaller
than s) and sends c across the channel. R decodes c to recover s. We want to take advantage of
knowledge about the probability distribution of s to minimize the expected number of bits in c.

First, we consider the case where the distribution of s is based on a stochastic source that generates
a sequence of independent letters. We examine how Huffman coding (Section 2) and arithmetic
coding (Section 3) attempt to achieve entropy.

Next, we see how we can do better if our data comes from a non-stochastic source. We generalize
the notion of entropy (Section 4) and introduce the Burrows-Wheeler Transform (BWT) to achieve
kth-order entropy (Section 5).

2 Huffman Coding

Assume that our stochastic source generates letters from a finite alphabet Σ such that letter i is
generated with probability pi. The probability distribution of letters is static.

2.1 Goals

The idea of Huffman coding [1] is to construct a prefix code for Σ: associate each letter i with a
codeword (bit string) wi. The goal is to minimize the average codeword length:

E
[
|wi|

]
=

|Σ|
∑

i=1

pi|wi|.

To be a prefix code, no wi can be a prefix of another wj . This means that, when the receiver is
reading the incoming stream of codewords, reading wi unambiguously refers to letter i. A binary
prefix code corresponds to all the root-to-leaf paths of a binary tree. See an example in Figure 1.

The receiver does not need to know the probability distribution, but only the codewords. (Of
course, given the probability distribution, one can recover the codewords if some canonical way of
breaking ties between equal probabilities in the Huffman algorithm is established.)

1

Letter i pi wi

A 0.1 000

B 0.1 001

C 0.2 01

D 0.3 10

E 0.3 11

Table 1: Σ = {A, B, C, D, E}, and each letter’s probability pi is given in the table. The codewords
wi are an example of an optimal Huffman code. Figure 1 shows the corresponding binary tree of
this code.

C DA B E

0

0

0 1

1

1

0 1

1.0

0.4

0.2

0.1 0.1 0.2 0.3 0.3

0.6

Figure 1: The binary tree of the example Huffman code in Table 1. Each node v is labelled with the
sum of the probabilities of the leaves in the subtree rooted at v. The labels of the edges traversed
in a root-to-leaf path determine the codeword for the letter corresponding to that leaf.

2.2 Algorithm

Now we present an algorithm for constructing the binary tree of a Huffman code. Note that this
problem is similar to constructing an optimal BST, but there are two differences: (1) the order of
the leaves is irrelevant and (2) only root-to-leaf paths matter with respect to optimality. Because
the problem is less constrained, we can solve it very efficiently using a greedy algorithm.

The algorithm is as follows:

1. Start with the |Σ| disconnected leaves, which are trivial subtrees.

2. Choose the two subtrees t1 and t2 with smallest pt1 and pt2 .

3. Create a new internal node t with the two children t1 and t2. t defines a subtree with
probability pt = pt1 + pt2 .

4. Until we have a single tree, repeat Steps 2–3. The root node is added last with probability 1.
Steps 2–3 are repeated |Σ| − 1 times.

2.3 Properties

Theorem 1. A Huffman code minimizes E
[
|wi|

]
= E

[
codeword length

]
= E

[
leaf depth

]
.

2

Proof. A formal proof is given in [1]. The main idea is that we first show that in an optimum tree,
if a leaf va has a lower probability than vb, then the depth of va is at most the depth of vb. Then if
the optimal code is a non-Huffman code, we can always greedily interchange two leaves to improve
(or not worsen) the expected depth of a leaf.

Theorem 2. E
[
huffman codeword length

]
∈ [H, H +1), where H is the entropy of the probability

distribution of Σ.

Proof. Consider an infinite complete binary tree. The claim is that you can, for each letter i, pick
a node li in the binary tree such that depth(li) =

⌈
lg 1

pi

⌉
and li is not an ancestor of any lj . Then,

take the tree on those leaves l1, l2, . . . , l|Σ|, and we have

E
[
leaf depth

]
=

|Σ|
∑

i=1

pi

⌈

lg
1

pi

⌉

< H + 1.

Suppose p1 ≥ p2 ≥ · · · ≥ pn. Then pick l1, l2, . . . , ln in order of increasing leaf depth. After picking
li arbitrarily, there are still dd

1
pi
ee − 1 nodes at that depth remaining, which is enough to support

the 1− pi ≤ 1− bbpicc remaining probability.

We can also generalize Huffman codes to nonbinary codes (nonbinary trees), or to k-grams instead
of letters, but we omit the details.

3 Arithmetic Coding

3.1 Motivation

Consider an example where Σ = {a, b} with pa =
1

1024
and pb = 1 −

1
1024
. One can verify that

H ≈ 0.01. However, a Huffman code is wa = 0 and wb = 1. The expected code length E
[
|wi|

]
is

obviously 1, which is about 100 times greater than the entropy H!

In this example, Huffman coding is terrible in the multiplicative sense. The problem is that code-
words can only be an integer number of bits, which forces us to round up to 1 no matter how small
the entropy is. A clever idea is to aggregate several fractional bits into one bit. This is done in
arithmetic coding [4]. Instead of losing 1 bit per letter, we lose 1 bit over the entire string. Thus,
for long strings, we basically achieve entropy.

3.2 The Code

The idea is to encode each string as a unique real number in [0, 1]. We divide the [0, 1] interval into
|Σ| first-level subintervals, with the length of each subinterval i equal to pi. Then, we recursively
divide each subinterval in the same way, scaling accordingly. Given a real number r, the first-level
subinterval of [0, 1] containing r determines the first letter of the decoded string. Which subinterval
of the second-level subinterval contains r determines the second letter, and so on. The sender must
include the length of the string (an additional O(lg n) bits) with the code so that the receiver knows
when to stop recursing.

3

For infinite strings, the code produces a real number, but for finite strings, there is a interval
of acceptable real numbers (L, R]. (We use L and R to represent both the real numbers and
their corresponding bit-string encodings.) When encoding a string, we arbitrarily pick the number
lcp(L, R)1. Here lcp(L, R) is the longest common prefix of the bit strings of L and R. If we think
of the bit strings as having an infinite number of trailing zeros, then after lcp(L, R), L reads 0 . . .
and R reads 1 . . . , so clearly, lcp(L, R)1 is in the interval (L, R].

Specifically, we compute the code of a string as follows:

code(x) =

{
(0, 1] if |x| = 0,
∑k−1

i=1 pi + pkcode(y) if x = k·y.

code(x) returns an interval, but we actually pick a real number in the interval as discussed above.

Unlike Huffman coding, in arithmetic coding, the receiver needs to know the probability distribution
in order to decode.

3.3 Example

Consider an example where Σ = {1, 2, 3} with p1 = 1/2, p2 = 1/4, and p3 = 1/4. Figure 2 shows
the partitioning of [0, 1]. For example, the string 32 maps to 1

2
+ 1
4
+ 1
4
(1
2
+ 1
4
) = 15

16
.

p
21

p p
3

1
p p

2
p

3

0 11/2 3/4

Figure 2: An example recursive partitioning of [0, 1] based on the probability distribution.

3.4 Properties

Theorem 3. E
[
total code length

]
∈ [Hn, Hn+ 1), where H is the entropy of the probability dis-

tribution of Σ and n is the length of the string.

Proof. Suppose the string x = x1x2· · ·xn. We can compute code length exactly:
⌈

lg 1
px1
+ lg 1

px2
+ · · ·+ lg 1

pxn

⌉

=
⌈

lg 1
px1px2 · · ·pxn
︸ ︷︷ ︸

length of final interval

⌉

= lg 1

bbpx1px2 · · ·pxn
cc

︸ ︷︷ ︸
dividing into this power of 2 leaves a notch in the interval

< 1 + lg 1
px1
+ lg 1

px2
+ · · ·+ lg 1

pxn

4

Thus, E
[
total code length

]
< 1 +Hn. [Recall bbxcc denotes the hyperfloor of x, which is equal to

2blg xc (round down to the nearest power of 2).]

There are variations of arithmetic coding to speed up computation by using less precision and
avoiding floating-point altogether, but again we omit the details. See e.g. [3].

4 Nonstochastic Sources

Thus far, we’ve been assuming stochastic strings, the frequency of whose characters is given only
by some distribution. But what if there are correlations among characters? What if characters
aren’t independent? (Consider, for instance, the likelihood with which ‘u’ follows ‘q’ in English.)

4.1 Empirical 0th-order entropy

The empirical 0th-order entropy of a (finite) string x measures the frequency fi (number of occur-
rences of each letter i) in x and assigns pi := fi/n as “probabilities” (really relative frequencies),
where n = |x|. Similar to before,

H(x) = H0(x) =

|Σ|
∑

i=1

pi log
1

pi
.

Unfortunately, the empirical 0th order entropy of some string x fails to capture any correlation
among x’s characters. Some other analysis is neeeded.

4.2 Empirical kth order entropy

Let’s instead compute the empirical kth order entropy of some string x, in order that we may
analyze x’s characters in the context of others.

Hk(x) =
∑

|w|=k

Pr[w occurring]×H0(successors(w)),

where |w| = k is assumed to be asymptotically smaller than n, Pr[w occurring] is given by
(# occurences of w)/n, and successors(w) represents the string of next letter after each occurrence
of w (the order of which is irrelevant).

|x|Hk(x), therefore, is a lower bound on compression by a kth-order code—a code depending on a
string’s last k letters. Accordingly, Hk+1 ≤ Hk∀k ≥ 0.

4.2.1 Realistic?

But is this bound realistic, particularly in light of the fact that Hk(aaaaaaaaa), for instance, is
0?! Let us not forget that kth-order entropy does not compute length, essentially because, in

5

information theory, length is assumed infinite. Let us therefore offer a minimal fix [2] and define
modified entropy as follows:

H∗
0 (x) =







0 if |x| = 0
(1 + log |x|)/|x| if |x| 6= 0 but H0(x) = 0
H0(x) otherwise.

But wait: now depending on more characters can actually hurt! (Consider a long string of a’s.)
We should therefore define H∗

k to allow dependence on shorter strings—anything ≤ k; we can then
take the overall minimum. Only then will it be the case that H∗

k+1(x) ≤ H∗
k(x), so that (rather

intuitively) more information about a string can only help us. We won’t bother with a more formal
definition; it is messy. See [2].

5 Burrows-Wheeler Transforms (BWT)

Let us now consider an algorithm that aspires to give us Hk—for all k! (For the curious, this is the
algorithm used by bzip2!)

5.1 Transforming a String

In order to attain more effective compression for a substring w, BWT clusters successors(w) to-
gether, effectively partitioning w into successors(w1)|successors(w1)| · · · , where w1, w2, . . . are all
strings of length k.

The transformation is as follows:

1. Append $ to the end of the string.

2. Sort all n rotations of the string in reverse order (i.e., in the same order as suffixes of re-
verse(string)).

3. Write down the first letter in each rotation in order.

Let’s consider our favorite word: banana.1

n a n a $ b a
n a $ b a b a
$ b a n a n a
a n a n a $ b
a n a $ b a n
a $ b a n a n
b a n a n a $

According to BWT, the encoding of banana is given by the leftmost column above: nn$aaab.
Notice the structure of this string: similar characters are clustered together! Moreover, consider
the structure of the table itself: common contexts (i.e., previous letters) are clustered together, as
in the case of “ana” in the table’s second and third lines. Similarly, all successors of “ana” (i.e., n
and $) are clustered together in some order (in the leftmost column).

1“I know how to spell banana; I just don’t know when to stop!” — a friend of Erik’s

6

5.2 Reconstructing a String

But can we reconstruct a string from its BWT form? Yes. Consider the design of this table:

1. Every column is a permutation of the original string.

2. Accordingly, the rightmost column = sort(first column) = sort(BWT).

3. The successor of (row in last column) = (row in first column).

4. The ith occurence of a character in the first column is also the ith occurence of the character
in the last column (because of lexical sorting).

The implication of this design is that we can unwind BWT’s first character, followed by its second
character, and so on, in O(n) time using hashing.

How might we reconstruct banana from nn$aaab? Well, we can derive the original string’s first
character (b) by locating the first character after $. We can then find the original string’s second
character by locating the first character after b: fortunately, we have but one option in the table, a.
Finding the third character is trickier (but doable!). We need to find the character after a: unfortu-
nately, we seem to have three (non-distinct) choices, per the table’s top three rows. However, bear
in mind that the table has maintained a sorted order. Hence, just as we chose a from the leftmost
column of the table’s fourth row (that a being the first in a sequence of three in that column), so
should we choose the first candidate for the original string’s third character: n! The remainder of
the string can be derived similarly.

5.3 Performance

Let’s examine the performance of BWT. We note again that, for any substring w, BWT puts
successors(w) together. That is, it partitions the string into successors(w1)|successors(w1)| · · · .
If we could encode x = x1x2 · · ·xr in

∑r
i=1 |xi|H0(xi), then encoding with BWT would give us

Hk—for all k!

Let’s do just that, albeit roughly. But first, a definition.

MTF Transform: Instead of writing a letter, write the index of that letter in a list and move
it to the front. (The resulting string, of course, will have the same length and the same alphabet
size.)

We now put forth the following theorem without proof.

Theorem 4. [2] BWT + MTF + arithmetic coding ≤ 8 · |T | · Hk(T) +
2
25
· |T | + O(Σk+1 log Σ),

∀k. (The O(Σk+1 log Σ) term is like kth-order Huffman.)

Unfortunately, this 2
25
for every letter is annoying; it seems artificial, so let’s try to get rid of it

with the following alternative.

7

Runlength Transform: Replace a string of 0’s with a binary string encoding the length using
special

¤

£

¡

¢
0 /

¤

£

¡

¢
1 symbols for clarity.

In other words,

1 2 0 0 0 0 0 0 5 3 . . .

becomes

1 2
¤

£

¡

¢
1

¤

£

¡

¢
1

¤

£

¡

¢
0 5 3

We now offer a final theorem, also without proof.

Theorem 5. BWT + MTF + runlength + arithmetic coding ≤ 5 · |T | ·H∗
k(T) + f(k) [2].

Exactly how much these constants can be improved remains an open question.

References

[1] David A. Huffman. A Method for The Construction of Minimum Redundancy Codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952.

[2] Giovanni Manzini. An analysis of the Burrows-Wheeler Transform. Journal of the ACM,
48(3):407–430, 2001.

[3] Alistair Moffat, Radford Neal, Ian H. Witten. Arithmetic Coding Revisited. ACM Transactions
on Information Systems, 16(3):256-294, July 1998.

[4] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic Coding for data Compression.
Communications of the ACM, 30(6):520–540, 1987.

8

