
Composition: A Way to Make Proofs Harder

Leslie Lamport

Systems Research Center, Digital Equipment Corporation

Abstract. Compositional reasoning about a system means writing its

speci�cation as the parallel composition of components and reasoning

separately about each component. When distracting language issues are

removed and the underlying mathematics is revealed, compositional rea-

soning is seen to be of little use.

1 Introduction

When an engineer designs a bridge, she makes a mathematical model of it and

reasons mathematically about her model. She might talk about calculating rather

than reasoning, but calculating
p
2 to three decimal places is just a way of

proving j
p
2�1:414j < 10�3. The engineer reasons compositionally, using laws of

mathematics to decompose her calculations into small steps. She would probably

be mysti�ed by the concept of compositional reasoning about bridges, �nding it

hard to imagine any form of reasoning that was not compositional.

Because computer systems can be built with software rather than girders and

rivets, many computer scientists believe these systems should not be modeled

with the ordinary mathematics used by engineers and scientists, but with some-

thing that looks vaguely like a programming language. We call such a language a

pseudo-programming languages (PPL). Some PPLs, such as CSP, use constructs

of ordinary programming languages. Others, like CCS, use more abstract nota-

tion. But, they have two de�ning properties: they are specially designed to model

computer systems, and they are not meant to implement useful, real-world pro-

grams.

When using a pseudo-programming language, compositional reasoning means

writing a model as the composition of smaller pseudo-programs, and reasoning

separately about those smaller pseudo-programs. If one believes in using PPLs

to model computer systems, then it is natural to believe that decomposition

should be done in terms of the PPL, so compositionality must be a Good Thing.

We adopt the radical approach of modeling computer systems the way en-

gineers model bridges|using mathematics. Compositionality is then a trivial

consequence of the compositionality of ordinary mathematics. We will see that

the compositional approaches based on pseudo-programming languages are anal-

ogous to performing calculations about a bridge design by decomposing it into

smaller bridge designs. While this technique may occasionally be useful, it is

hardly a good general approach to bridge design.

W.-P. de Roever, H. Langmaack, and A. Pnueli (Eds.): COMPOS’97, LNCS 1536, pp. 402-423, 1998.
 Springer-Verlag Berlin Heidelberg 1998

2 The Mathematical Laws of Composition

Mathematical reasoning is embodied in statements (also called theorems) and

their proofs. The reasoning is hierarchical|the proof of a statement consists of

a sequence of statements, each with its proof. The decomposition stops at a level

at which the proof is su�ciently obvious that it can be written as a short, simple

paragraph. How rigorous the proof is depends on what \obvious" means. In the

most rigorous proofs, it means simple enough so that even a computer can verify

it. Less rigorous proofs assume a reader of greater intelligence (or greater faith).

We will use the notation introduced in [10] to write hierarchical proofs.

Two fundamental laws of mathematics are used to decompose proofs:

^-Composition A) B

A) C

A) B ^ C

_ -Composition A) C

B) C

A _ B) C

Logicians have other names for these laws, but our subject is compositionality,

so we adopt these names. A special case of _-composition is:

Case-Analysis A ^ B) C

A ^ :B) C

A) C

The propositional ^- and _-composition rules have the following predicate-logic

generalizations:

8 -Composition (i 2 S) ^ P) Q(i)

P) (8 i 2 S : Q(i))

9 -Composition (i 2 S) ^ P(i)) Q

(9 i 2 S : P(i))) Q

Another rule that is often used (under a very di�erent name) is

Act-Stupid A) C

A ^ B) C

We call it the act-stupid rule because it proves that A^B implies C by ignoring

the hypothesis B . This rule is useful when B can't help in the proof, so we need

only the hypothesis A. Applying it in a general method, when we don't know

what A and B are, is usually a bad idea.

3 Describing a System with Mathematics

We now explain how to use mathematics to describe systems. We take as our

example a digital clock that displays the hour and minute. For simplicity, we

ignore the fact that a clock is supposed to tell the real time, and we instead just

specify the sequence of times that it displays. A more formal explanation of the

approach can be found in [9].

403Composition: A Way to Make Proofs Harder

3.1 Discrete Dynamic Systems

Our clock is a dynamic system, meaning that it evolves over time. The classic way

to model a dynamic system is by describing its state as a continuous function of

time. Such a function would describe the continuum of states the display passes

through when changing from 12:49 to 12:50. However, we view the clock as a

discrete system. Discrete systems are, by de�nition, ones we consider to exhibit

discrete state changes. Viewing the clock as a discrete system means ignoring

the continuum of real states and pretending that it changes from 12:49 to 12:50

without passing through any intermediate state. We model the execution of a

discrete system as a sequence of states. We call such a sequence a behavior. To

describe a system, we describe all the behaviors that it can exhibit.

3.2 An Hour Clock

A First Attempt To illustrate how systems are described mathematically, we

start with an even simpler example than the hour-minute clock|namely, a clock

that displays only the hour. We describe its state by the value of the variable

hr . A typical behavior of this system is

[hr = 11] ! [hr = 12] ! [hr = 1] ! [hr = 2] ! � � �

We describe all possible behaviors by an initial predicate that speci�es the pos-

sible initial values of hr , and a next-state relation that speci�es how the value

of hr can change in any step (pair of successive states).

The initial predicate is just hr 2 f1; : : : ; 12g. The next-state relation is the

following formula, in which hr denotes the old value and hr 0 denotes the new

value.

((hr = 12) ^ (hr 0 = 1)) _ ((hr 6= 12) ^ (hr 0 = hr + 1))

This kind of formula is easier to read when written with lists of conjuncts or

disjuncts, using indentation to eliminate parentheses:

_ ^ hr = 12

^ hr 0 = 1

_ ^ hr 6= 12

^ hr 0 = hr + 1

There are many ways to write the same formula. Borrowing some notation from

programming languages, we can write this next-state relation as

hr 0 = if hr = 12 then 1 else hr + 1

This kind of formula, a Boolean-valued expression containing primed and un-

primed variables, is called an action.

Our model is easier to manipulate mathematically if it is written as a single

formula. We can write it as

^ hr 2 f1; : : : ; 12g
^ 2 (hr 0 = if hr = 12 then 1 else hr + 1)

(1)

404 L. Lamport

This is a temporal formula, meaning that it is true or false of a behavior. A

state predicate like hr 2 f1; : : : ; 12g is true for a behavior i� it is true in the �rst

state. A formula of the form 2N asserts that the action N holds on all steps of

the behavior.

By introducing the operator 2, we have left the realm of everyday mathe-

matics and entered the world of temporal logic. Temporal logic is more compli-

cated than ordinary mathematics. Having a single formula as our mathematical

description is worth the extra complication. However, we should use temporal

reasoning as little as possible. In any event, temporal logic formulas are still

much easier to reason about than programs in a pseudo-programming language.

Stuttering Before adopting (1) as our mathematical description of the hour

clock, we ask the question, what is a state? For a simple clock, the obvious

answer is that a state is an assignment of values to the variable hr . What about

a railroad station with a clock? To model a railroad station, we would use a

number of additional variables, perhaps including a variable sig to record the

state of a particular signal in the station. One possible behavior of the system

might be

2
64
hr = 11

sig = \red"
.

.

.

3
75 !

2
64
hr = 12

sig = \red"
.

.

.

3
75 !

2
64
hr = 12

sig = \green"
.

.

.

3
75 !

2
64
hr = 12

sig = \red"
.

.

.

3
75 !

2
64
hr = 1

sig = \red"
.

.

.

3
75 ! � � �

We would expect our description of a clock to describe the clock in the railroad

station. However, formula (1) doesn't do this. It asserts that hr is incremented

in every step, but the behavior of the railroad station with clock includes steps

like the second and third, which change sig but leave hr unchanged.

To write a single description that applies to any clock, we let a state consist

of an assignment of values to all possible variables. In mathematics, the equation

x + y = 1, doesn't assert that there is no z . It simply says nothing about the

value of z . In other words, the formula x + y = 1 is not an assertion about some

universe containing only x and y . It is an assertion about a universe containing

x , y , and all other variables; it constrains the values of only the variables x

and y .

Similarly, a mathematical formula that describes a clock should be an asser-

tion not about the variable hr , but about the entire universe of possible variables.

It should constrain the value only of hr and should allow arbitrary changes to

the other variables|including changes that occur while the value of hr stays the

same. We obtain such a formula by modifying (1) to allow \stuttering" steps

405Composition: A Way to Make Proofs Harder

that leave hr unchanged, obtaining:

^ hr 2 f1; : : : ; 12g

^ 2
�
_ hr0 = if hr = 12 then 1 else hr + 1

_ hr0 = hr

� (2)

Clearly, every next-state relation we write is going to have a disjunct that leaves

variables unchanged. So, it's convenient to introduce the notation that [A]v
equals A _ (v 0 = v), where v 0 is obtained from the expression v by priming

all its free variables. We can then write (2) more compactly as

^ hr 2 f1; : : : ; 12g
^ 2[hr 0 = if hr = 12 then 1 else hr + 1]hr

(3)

This formula allows behaviors that stutter forever, such as

[hr = 11] ! [hr = 12] ! [hr = 12] ! [hr = 12] ! � � �

Such a behavior describes a stopped clock. It illustrates that we can assume all

behaviors are in�nite, because systems that halt are described by behaviors that

end with in�nite stuttering. But, we usually want our clocks not to stop.

Fairness To describe a clock that doesn't stop, we must add a conjunct to (3)

to rule out in�nite stuttering. Experience has shown that the best way to write

this conjunct is with fairness formulas. There are two types of fairness, weak

and strong, expressed with the WF and SF operators that are de�ned as follows.

WFv (A) If A ^ (v 0 6= v) is enabled forever, then in�nitely many A ^ (v 0 6= v)

steps must occur.

SFv (A) If A^(v 0 6= v) is enabled in�nitely often, then in�nitely many A^(v 0 6=
v) steps must occur.

The v 0 6= v conjuncts make it impossible to use WF or SF to write a formula

that rules out �nite stuttering.

We can now write our description of the hour clock as the formula � , de�ned

by

N
�

= hr 0 = if hr = 12 then 1 else hr + 1

�
�

= (hr 2 f1; : : : ; 12g) ^ 2[N]hr ^ WFhr (N)

The �rst two conjuncts of � (which equal (3)), express a safety property. In-

tuitively, a safety property is characterized by any of the following equivalent

conditions.

{ It asserts that the system never does something bad.

{ It asserts that the system starts in a good state and never takes a wrong

step.

406 L. Lamport

{ It is �nitely refutable|if it is violated, then it is violated at some particular

point in the behavior.

The last conjunct of � (the WF formula) is an example of a liveness property.

Intuitively, a liveness property is characterized by any of the following equivalent

conditions.

{ It asserts that the system eventually does something good.

{ It asserts that the system eventually takes a good step.

{ It is not �nitely refutable|it is possible to satisfy it after any �nite portion

of the behavior.

Formal de�nitions of safety and liveness are due to Alpern and Schneider [4].

Safety properties are proved using only ordinary mathematics (plus a couple

of lines of temporal reasoning). Liveness properties are proved by combining

temporal logic with ordinary mathematics. Here, we will mostly ignore liveness

and concentrate on safety properties.

3.3 An Hour-Minute Clock

The Internal Speci�cation It is now straightforward to describe a clock with

an hour and minute display. The two displays are represented by the values of

the variables hr andmin. To make the speci�cation more interesting, we describe

a clock in which the two displays don't change simultaneously when the hour

changes. When the display changes from 8:59 to 9:00, it transiently reads 8:00

or 9:59. Since we are ignoring the actual times at which state changes occur,

these transient states are no di�erent from the states when the clock displays

the \correct" time.

Figure 1 de�nes a formula � that describes the hour-minute clock. It uses an

additional variable chg that equals true when the display is in a transient state.

Action Mm describes the changing of min; action Mh describes the changing

of hr . The testing and setting of chg by these actions is a bit tricky, but a

little thought reveals what's going on. Action Mh introduces a gratuitous bit

of cleverness to remove the if/then construct from the speci�cation of the new

value of hr . The next-state relation for the hour-minute clock is Mm _ Mh ,

because a step of the clock increments either min or hr . Since hhr ; min chg i0
equals hhr 0; min 0; chg 0 i, it equals hhr ; min; chg i i� hr , min, and, chg are all

unchanged.

Existential Quanti�cation Formula � of Figure 1 contains the free variables

hr ,min, and chg . However, the description of a clock should mention only hr and

min, not chg . We need to \hide" chg . In mathematics, hiding means existential

quanti�cation. The formula 9 x : y = x 2 asserts that there is some value of

x that makes y = x 2 true; it says nothing about the actual value of x . The

formula describing an hour-minute clock is 999999 chg : �. The quanti�er 999999 is a

temporal operator, asserting that there is a sequence of values of chg that makes

� true. The precise de�nition of 999999 is a bit subtle and can be found in [9].

407Composition: A Way to Make Proofs Harder

Init�
�

= ^ hr 2 f1; : : : ; 12g
^ min 2 f0; : : : ; 59g
^ chg = false

Mm
�

= ^ :((min = 0) ^ chg)

^ min 0 = (min + 1) mod 60

^ chg 0 = (min = 59) ^ :chg
^ hr 0 = hr

Mh
�

= ^ _ (min = 59) ^ :chg
_ (min = 0) ^ chg

^ hr 0 = (hr mod 12) + 1

^ chg 0 = :chg
^ min 0 = min

�
�

= ^ Init�
^ 2[Mm _Mh]hhr;min;chg i

^ WFhhr;min;chg i(Mm _Mh)

Fig. 1. The internal speci�cation of an hour-minute clock.

3.4 Implementation and Implication

An hour-minute clock implements an hour clock. (If we ask someone to build a

device that displays the hour, we can't complain if the device also displays the

minute.) Every behavior that satis�es the description of an hour-minute clock

also satis�es the description of an hour clock. Formally, this means that the

formula (999999 chg :�)) � is true. In mathematics, if something is true, we should

be able to prove it. The rules of mathematics allow us to decompose the proof

hierarchically. Here is the statement of the theorem, and the �rst two levels of

its proof. (See [10] for an explanation of the proof style.)

Theorem1. (999999 chg : �)) �

h1i1. �) �

h2i1. Init�) hr 2 f1; : : : ; 12g
h2i2. 2[Mm _Mh]hhr;min;chg i) 2[N]hr
h2i3. �)WFhr (N)

h2i4. Q.E.D.
Proof: By h2i1{h2i3 and the ^-composition and act-stupid rules.

h1i2. Q.E.D.
Proof: By h1i1, the de�nition of �, and predicate logic1, since chg does

not occur free in � .

1 We are actually reasoning about the temporal operator 999999 rather than ordinary

existential quanti�cation, but it obeys the usual rules of predicate logic.

408 L. Lamport

Let's now go deeper into the hierarchical proof. The proof of h2i1 is trivial,

since Init� contains the conjunct hr 2 f1; : : : ; 12g. Proving liveness requires

more temporal logic than we want to delve into here, so we will not show the

proof of h2i3 or of any other liveness properties. We expand the proof of h2i2
two more levels as follows.

h2i2. 2[Mm _Mh]hhr;min;chg i) 2[N]hr
h3i1. [Mm _Mh]hhr;min;chg i) [N]hr
h4i1. Mm) [N]hr
h4i2. Mh) [N]hr
h4i3. (hhr ;min; chg i0 = hhr ;min; chg i)) [N]hr
h4i4. Q.E.D.
Proof: By h4i1{h4i3 and the _-composition rule.

h3i2. Q.E.D.
Proof: By h3i1 and the rule

A) B

2A) 2B
.

The proof of h4i1 is easy, sinceMm implies hr 0 = hr . The proof of h4i3 is equally
easy. The proof of h4i2 looks easy enough.

h4i2. Mh) [N]hr
Proof: Mh) hr 0 = (hr mod 12) + 1

) hr 0 = if hr = 12 then 1 else hr + 1
�

= N

However, this proof is wrong! The second implication is not valid. For example,

if hr equals 25, then the �rst equation asserts hr 0 = 2, while the second asserts

hr 0 = 26. The implication is valid only under the additional assumption hr 2
f1; : : : ; 12g.

De�ne Inv to equal the predicate hr 2 f1; : : : ; 12g. We must show that Inv is

true throughout the execution, and use that fact in the proof of step h4i2. Here
are the top levels of the corrected proof.

h1i1. �) �

h2i1. Init�) hr 2 f1; : : : ; 12g
h2i2. Init� ^ 2[Mm _Mh]hhr;min;chg i) 2Inv

h2i3. 2Inv ^ 2[Mm _Mh]hhr;min;chg i) 2[N]hr
h2i4. 2Inv ^ �)WFhr (N)

h2i5. Q.E.D.
Proof: By h2i1{h2i4, and the ^-composition and act-stupid rules.

h1i2. Q.E.D.
Proof: By h1i1, the de�nition of �, and predicate logic, since chg does not

occur free in � .

The high-level proofs of h2i2 and h2i3 are
h2i2. Init� ^ 2[Mm _Mh]hhr;min;chg i) 2Inv

h3i1. Init�) Inv

h3i2. Inv ^ [Mm _Mh]hhr;min;chg i) Inv 0

h3i3. Q.E.D.
Proof: By h3i1, h3i2 and the rule

P ^ [A]v) P 0

P ^ 2[A]v) 2P
.

h2i3. 2Inv ^ 2[Mm _Mh]hhr;min;chg i) 2[N]hr

409Composition: A Way to Make Proofs Harder

h3i1. Inv ^ [Mm _Mh]hhr;min;chg i) [N]hr
h3i2. Q.E.D.
Proof: By h3i1 and the rules

A) B

2A) 2B
and 2(A^B) � 2A^2B .

The further expansion of the proofs is straightforward and is left as an exercise

for the diligent reader.

3.5 Invariance and Step Simulation

The part of the proof shown above is completely standard. It contains all the

temporal-logic reasoning used in proving safety properties. The formula Inv sat-

isfying h2i2 is called an invariant. Substep h3i2 of step h2i3 is called proving

step simulation. The invariant is crucial in this step and in step h2i4 (the proof
of liveness). In general, the hard parts of the proof are discovering the invari-

ant, substep h3i2 of step h2i2 (the crucial step in the proof of invariance), step

simulation, and liveness.

In our example, Inv asserts that the value of hr always lies in the correct set.

Computer scientists call this assertion type correctness, and call the set of correct

values the type of hr . Hence, Inv is called a type-correctness invariant. This is the

simplest form of invariant. Computer scientists usually add a type system just

to handle this particular kind of invariant, since they tend to prefer formalisms

that are more complicated and less powerful than simple mathematics.

Most invariants express more interesting properties than just type correct-

ness. The invariant captures the essence of what makes an implementation cor-

rect. Finding the right invariant, and proving its invariance, su�ces to prove the

desired safety properties of many concurrent algorithms. This is the basis of the

�rst practical method for reasoning about concurrent algorithms, which is due

to Ashcroft [5].

3.6 A Formula by any Other Name

We have been calling formulas like � and � \descriptions" or \models" of a

system. It is customary to call them speci�cations. This term is sometimes re-

served for high-level description of systems, with low-level descriptions being

called implementations. We make no distinction between speci�cations and im-

plementations. They are all descriptions of a system at various levels of detail.

We use the terms algorithm, description, model, and speci�cation as di�erent

names for the same thing: a mathematical formula.

4 Invariance in a Pseudo-Programming Language

Invariance is a simple concept. We now show how a popular method for prov-

ing invariance in terms of a pseudo-programming language is a straightforward

consequence of the rules of mathematics.

410 L. Lamport

4.1 The Owicki-Gries Method

In the Owicki-Gries method [8, 11], the invariant is written as a program annota-

tion. For simplicity, let's assume a multiprocess program in which each process i

in a set P of processes repeatedly executes a sequence of atomic instructions S
(i)
0 ,

. . . , S
(i)
n�1. The invariant is written as an annotation, in which each statement

S
(i)
j is preceded by an assertion A

(i)
j , as shown in Figure 2.

S
(i)
0

S
(i)
n�1

fA(i)
n�1g

?

?

...

?

fA(i)
0 g

Fig. 2. An Owicki-Gries style annotation of a process.

To make sense of this picture, we must translate it into mathematics. We �rst

rewrite each operation S
(i)
j as an action, which we also call S

(i)
j . This rewriting is

easy. For example, an assignment statement x : = x +1 is written as the action

(x 0 = x + 1) ^ (h : : :i0 = h : : :i), where \. . . " is the list of other variables. We

represent the program's control state with a variable pc, where pc[i] = j means

that control in process i is immediately before statement S
(i)
j . The program and

its invariant are then described by the formulas � and Inv of Figure 3.

We can derive the Owicki-Gries rules for proving invariance by applying the

proof rules we used before. The top-level proof is:

Theorem2. (Owicki-Gries) �) 2I

h1i1. Init) Inv

h1i2. Inv ^ [N]hvbl;pc i) Inv 0

h2i1. Inv ^ N) Inv 0

h2i2. Inv ^ (hvbl ; pc i0 = hvbl ; pc i)) Inv 0

h2i3. Q.E.D.
Proof: By h2i1, h2i2, and the _-composition rule.

h1i3. Q.E.D.
Proof: By h1i1, h1i2, and the rule

P ^ [A]v) P 0

P ^ 2[A]v) 2P
.

411Composition: A Way to Make Proofs Harder

Init
�

= ^ 8 i 2 P : pc[i] = 0

^ : : : [The initial conditions on program variables.]

Go
(i)
j

�

= ^ pc[i] = j

^ pc[i]0 = (j + 1) mod n

^ 8 k 2 P : (k 6= i)) (pc[k]0 = pc[k])

N
�

= 9 i 2 P; j 2 f0; : : : ;n�1g : Go
(i)
j ^ S

(i)
j

vbl
�

= h : : :i [The tuple of all program variables.]

�
�

= Init ^ 2[N]hvbl;pc i

Inv
�

= 8 i 2 P; j 2 f0; : : : ;n�1g : (pc[i] = j)) A
(i)
j

Fig. 3. The formulas describing the program and annotation of Figure 2.

The hard part is the proof of h2i1. We �rst decompose it using the 8 - and
9 -composition rules.

h2i1. Inv ^ N) Inv 0

h3i1.

0
B@
^ i 2 P
^ j 2 f0; : : : ;n�1g
^ Inv ^Go

(i)
j ^ S

(i)
j

1
CA) Inv 0

h4i1.

0
BBBBB@

^ i 2 P
^ j 2 f0; : : : ;n�1g
^ k 2 P
^ l 2 f0; : : : ;n�1g
^ Inv ^Go

(i)
j ^ S

(i)
j

1
CCCCCA
) ((pc[k]0 = l)) (A

(k)

l
)0)

h4i2. Q.E.D.
Proof: By h4i1, the de�nition of Inv , and the 8 -composition rule.

h3i2. Q.E.D.
Proof: By h3i1, the de�nition of N , and the 9 -composition rule.

We prove h4i1 by cases, after �rst using propositional logic to simplify its state-

ment. We let j � 1 equal (j+1) mod n.

h4i1.

0
BB@
^ i ; k 2 P
^ j ; l 2 f0; : : : ;n�1g
^ pc[k]0 = l

^ Inv ^Go
(i)
j ^ S

(i)
j

1
CCA) (A

(k)

l)0

h5i1. Case: i = k

h6i1.

0
@^ i 2 P
^ j 2 f0; : : : ;n�1g
^ A

(i)
j ^ S

(i)
j

1
A) (A

(i)
j�1)

0

h6i2. Q.E.D.
Proof: By h6i1, the level-h5i assumption, the de�nition of Inv , and

412 L. Lamport

the act-stupid rule, since (pc[i]0 = l) ^Go
(i)
j implies (l = j � 1).

h5i2. Case: i 6= k

h6i1.

0
@^ i ; k 2 P
^ j ; l 2 f0; : : : ;n�1g
^ A

(i)
j ^ A

(k)

l ^ S
(i)
j

1
A) (A

(k)

l)0

h6i2. Q.E.D.
Proof: By h6i1, the level-h5i assumption, the de�nition of Inv , and

the act-stupid rule, since (pc[k]0 = l) ^ Go
(i)
j implies (pc[k] = l), for

k 6= i , and (pc[k] = l) ^ Inv implies A
(k)

l .

We are �nally left with the two subgoals numbered h6i1. Summarizing, we see
that to prove Init) 2Inv , it su�ces to prove the two conditions

A
(i)
j ^ S

(i)
j) (A

(i)
j�1)

0

A
(i)
j ^ A

(k)

l ^ S
(i)
j) (A

(k)

l)0

for all i ; k in P with i 6= k , and all j ; l in f0; : : : ;n�1g. These conditions are
called Sequential Correctness and Interference Freedom, respectively.

4.2 Why Bother?

We now consider just what have has been accomplished by describing by proving

invariance in terms of a pseudo-programming language instead of directly in

mathematics.

Computer scientists are quick to point out that using \ :=" instead of \="

avoids the need to state explicitly what variables are left unchanged. In prac-

tice, this reduces the length of a speci�cation by anywhere from about 10% (for

a very simple algorithm) to 4% (for a more complicated system). For this minor

gain, it introduces the vexing problem of �guring out exactly what variables

can and cannot be changed by executing x : = x + 1. The obvious requirement

that no other variable is changed would not allow us to implement x as the sum

lh � 232 + rh of two 32-bit values, since it forbids lh and rh to change when x is

incremented. The di�culty of deciding what can and cannot be changed by an

assignment statement is one of the things that makes the semantics of program-

ming languages (both real and pseudo) complicated. By using mathematics, we

avoid this problem completely.

A major achievement of the Owicki-Gries method is eliminating the explicit

mention of the variable pc. By writing the invariant as an annotation, one can

write A
(i)
j instead of (pc[i] = j)) A

(i)
j . At the time, computer scientists seemed

to think that mentioning pc was a sin. However, when reasoning about a concur-

rent algorithm, we must refer to the control state in the invariant. Owicki and

Gries therefore had to introduce dummy variables to serve as euphemisms for

pc. When using mathematics, any valid formula of the form Init ^2[N]v) 2P ,

for a state predicate P , can be proved without adding dummy variables.

One major drawback of the Owicki-Gries method arises from the use of the

act-stupid rule in the proofs of the two steps numbered h6i2. The rule was applied

413Composition: A Way to Make Proofs Harder

without regard for whether the hypotheses being ignored are useful. This means

that there are annotations for which step h2i1 (which asserts N ^ Inv) Inv 0) is

valid but cannot be proved with the Owicki-Gries method. Such invariants must

be rewritten as di�erent, more complicated annotations.

Perhaps the thing about the Owicki-Gries method is that it obscures the

underlying concept of invariance. We refer the reader to [6] for an example of

how complicated this simple concept becomes when expressed in terms of a

pseudo-programming language. In 1976, the Owicki-Gries method seemed like a

major advance over Ashcroft's simple notion of invariance. We have since learned

better.

5 Re�nement

5.1 Re�nement in General

We showed above that an hour-minute clock implements an hour clock by proving

(999999 chg : �)) � . That proof does not illustrate the general case of proving that

one speci�cation implements another because the higher-level speci�cation �

has no internal (bound) variable. The general case is covered by the following

proof outline, where x , y , and z denote arbitrary tuples of variables, and the

internal variables y and z of the two speci�cations are distinct from the free

variables x . The proof involves �nding a function f , which is called a re�nement

mapping [1].

Theorem3. (Re�nement) (999999 y : �(x ; y))) (999999 z : �(x ; z))

Let: z
�

= f (x ; y)

h1i1. �(x ; y)) �(x ; z)

h1i2. �(x ; y)) (999999 z : �(x ; z))

Proof: By h1i1 and predicate logic, since the variables of z are distinct

from those of x .

The proof of step h1i1 has the same structure as in our clock example.

5.2 Hierarchical Re�nement

In mathematics, it is common to prove a theorem of the form P) Q by in-

troducing a new formula R and proving P) R and R) Q . We can prove

that a lower-level speci�cation 999999 y : �(x ; y) implies a higher-level speci�cation
999999 z :�(x ; z) by introducing an intermediate-level speci�cation 999999w : 	(x ;w) and

using the following proof outline.

Let: 	(x ;w)
�

= : : :

h1i1. (999999 y : �(x ; y))) (999999w : 	(x ;w))

Let: w
�

= g(x ; y)
. . .

h1i2. (999999w : 	(x ;w))) (999999 z : �(x ; z))

414 L. Lamport

Let: z
�

= h(x ;w)
. . .

h1i3. Q.E.D.
Proof: By h1i1 and h1i2.

This proof method is called hierarchical decomposition. It's a good way to explain

a proof. By using a sequence multiple intermediate speci�cations, each di�ering

from the next in only one aspect, we can decompose the proof into conceptually

simple steps.

Although it is a useful pedagogical tool, hierarchical decomposition does

not simplify the total proof. In fact, it usually adds extra work. Hierarchical

decomposition adds the task of writing the extra intermediate-level speci�cation.

It also restricts how the proof is decomposed. The single re�nement mapping f in

the outline of the direct proof can be de�ned in terms of the two mappings g and

h of the hierarchical proof by f (x ; y)
�

= h(x ; g(x ; y)). The steps of a hierarchical

proof can then be reshu�ed to form a particular way of decomposing the lower

levels of the direct proof. However, there could be better ways to decompose

those levels.

5.3 Interface Re�nement

We have said that implementation is implication. For this to be true, the two

speci�cations must have the same free variables. If the high-level speci�cation

describes the sending of messages on a network whose state is represented by

the variable net , then the low-level speci�cation must also describe the sending

of messages on net .

We often implement a speci�cation by re�ning the interface. For example,

we might implement a speci�cation �(net) of sending messages on net by a

speci�cation �(tran) of sending packets on a \transport layer" whose state is

represented by a variable tran. A single message could be broken into multiple

packets. Correctness of the implementation cannot mean validity of �(tran))
�(net), since �(tran) and �(net) have di�erent free variables.

To de�ne what it means for �(tran) to implement �(net), we must �rst de�ne

what it means for sending a set of packets to represent the sending of a message.

This de�nition is written as a temporal formula R(net ; trans), which is true of

a behavior i� the sequence of values of trans represents the sending of packets

that correspond to the sending of messages represented by the sequence of values

of net . We call R an interface re�nement. For R to be a sensible interface re-

�nement, the formula �(trans)) 999999 net : R(net ; trans) must be valid, meaning

that every set of packet transmissions allowed by �(trans) represents some set

of message transmissions. We say that �(tran) implements �(net) under the

interface re�nement R(net ; trans) i� �(tran) ^ R(net ; trans) implies �(net).

6 Decomposing Speci�cations

Pseudo-programming languages usually have some parallel composition opera-

tor k, where S 1kS 2 is the parallel composition of speci�cations S 1 and S 2. We

415Composition: A Way to Make Proofs Harder

observed in our hour-clock example that a mathematical speci�cation S 1 does

not describe only a particular system; rather, it describes a universe containing

(the variables that represent) the system. Composing two systems means en-

suring that the universe satis�es both of their speci�cations. Hence, when the

speci�cations S 1 and S 2 are mathematical formulas, their composition is just

S 1 ^ S 2.

6.1 Decomposing a Clock into its Hour and Minute Displays

We illustrate how composition becomes conjunction by specifying the hour-

minute clock as the conjunction of the speci�cations of an hour process and

a minute process. It is simpler to do this if each variable is modi�ed by only

one process. So, we rewrite the speci�cation of the hour-minute clock by replac-

ing the variable chg with the expression chgh 6= chgm , where chgh and chgm
are two new variables, chgh being modi�ed by the hour process and chgm by

the minute process. The new speci�cation is 999999 chgh ; chgm : 	 , where 	 is de-

�ned in Figure 4. Proving that this speci�cation is equivalent to 999999 chg : �,

Init	
�

= ^ hr 2 f1; : : : ; 12g
^ min 2 f0; : : : ; 59g
^ chgm = chgh = true

Nm
�

= ^ :((min = 0) ^ (chgm 6= chgh))

^ min 0 = (min + 1) mod 60

^ chg 0m = if min = 59 then :chgm else chgh
^ hhr ; chgh i0 = hhr ; chgh i

N h
�

= ^ _ (min = 59) ^ (chgm = chgh)

_ (min = 0) ^ (chgm 6= chgh)

^ hr 0 = (hr mod 12) + 1

^ chg 0h = :chgh
^ hmin; chgm i0 = hmin; chgm i

	
�

= ^ Init	
^ 2[Nm _ N h]hhr;min; chgm ; chgh i

^ WFhhr;min; chgm ; chgh i(Nm _ N h)

Fig. 4. Another internal speci�cation of the hour-minute clock.

where � is de�ned in Figure 1, is left as a nice exercise for the reader. The

proof that 999999 chgh ; chgm : 	 implies 999999 chg : � uses the re�nement mapping

chg
�

= (chgh 6= chgm). The proof of the converse implication uses the re�ne-

ment mapping

chgh
�

= chg ^ (min = 59) chgm
�

= chg ^ (min = 0)

416 L. Lamport

The speci�cations 	h and 	m of the hour and minute processes appear in Fig-

ure 5. We now sketch the proof that 	 is the composition of those two speci�-

Initm
�

= ^ min 2 f0; : : : ; 59g
^ chgm = true

Inith
�

= ^ hr 2 f1; : : : ; 12g
^ chgh = true

	h
�

= Inith ^ 2[N h]hhr; chgh i ^WFhhr; chgh i(N h)

	m
�

= Initm ^ 2[Nm]hmin; chgm i ^WFhmin; chgm i(Nm)

Fig. 5. De�nition of the speci�cations 	h and 	m.

cations.

Theorem4. 	 � 	m ^ 	h

h1i1. Init	 � Initm ^ Inith
h1i2. 2[Nm _N h]hhr ;min; chgm ; chgh i � 2[Nm]hmin; chgm i ^ 2[N h]hhr; chgh i
h2i1. [Nm _N h]hhr;min; chgm ; chgh i � [Nm]hmin; chgm i ^ [N h]hhr; chgh i
h2i2. Q.E.D.
Proof: By h2i1 and the rules

A) B

2A) 2B
and 2(A ^ B) � 2A ^ 2B .

h1i3. ^) WFhmin; chgm i(Nm) ^WFhhr; chgh i(N h)

^ 	m ^ 	h) WFhhr;min; chgm ; chgh i(Nm _N h)

h1i4. Q.E.D.
Proof: By h1i1{h1i3.

Ignoring liveness (step h1i3), the hard part is proving h2i1. This step is an

immediate consequence of the following propositional logic tautology, which we

call the _ $ ^ rule.

N i ^ (j 6= i)) (v 0j = v j) for 1 � i ; j � n

[N 1 _ : : : _ N n]hv1;:::;vn i = [N 1]v1 ^ : : : ^ [N n]vn

Its proof is left as an exercise for the reader.

6.2 Decomposing Proofs

In pseudo-programming language terminology, a compositional proof of re�ne-

ment (implementation) is one performed by breaking a speci�cation into the

parallel composition of processes and separately proving the re�nement of each

process.

The most naive translation of this into mathematics is that we want to prove

�) � by writing � as �1 ^ �2 and proving �) �1 and �) �2 sepa-

rately. Such a decomposition accomplishes little. The lower-level speci�cation

417Composition: A Way to Make Proofs Harder

� is usually much more complicated than the higher-level speci�cation �, so

decomposing � is of no interest.

A slightly less naive translation of compositional reasoning into mathematics

involves writing both � and � as compositions. This leads to the following proof

of �) �.

h1i1. ^ � � �1 ^ �2

^ � � �1 ^�2

Proof: Use the _ $ ^ rule.

h1i2. �1) �1

h1i3. �2) �2

h1i4. Q.E.D.
Proof: By h1i1{h1i3 and the ^-composition and act-stupid rules.

The use of the act-stupid rule in the �nal step tells us that we have a problem.

Indeed, this method works only in the most trivial case. Proving each of the im-

plications �i) �i requires proving �i) Inv i for some invariant Inv i . Except

when each process accesses only its own variables, so there is no communication

between the two processes, Inv i will have to mention the variables of both pro-

cesses. As our clock example illustrates, the next-state relation of each process's

speci�cation allows arbitrary changes to the other process's variables. Hence, �i

can't imply any nontrivial invariant that mentions the other process's variables.

So, this proof method doesn't work.

Think of each process �i as the other process's environment. We can't prove

�i) �i because it asserts that �i implements �i in the presence of arbitrary

behavior by its environment|that is, arbitrary changes to the environment vari-

ables. No real process works in the face of completely arbitrary environment

behavior.

Our next attempt at compositional reasoning is to write a speci�cation E i

of the assumptions that process i requires of its environment and prove �i ^
E i) �i . We hope that one process doesn't depend on all the details of the

other process's speci�cation, so E i will be much simpler than the other process's

speci�cation �2�i . We can then prove �) � using the following propositional

logic tautology.

�1 ^ �2) E 1

�1 ^ E 1) �1

�1 ^ �2) E 2

�2 ^ E 2) �2

�1 ^ �2) �1 ^�2

However, this requires proving �) E i , so we still have to reason about the

complete lower-level speci�cation �. What we need is a proof rule of the following

form

�1 ^�2) E 1

�1 ^ E 1) �1

�1 ^�2) E 2

�2 ^ E 2) �2

�1 ^ �2) �1 ^�2

(4)

In this rule, the hypotheses �) E i of the previous rule are replaced by �) E i .

This is a great improvement because � is usually much simpler than �. A rule

like (4) is called a decomposition theorem.

418 L. Lamport

Unfortunately, (4) is not valid for arbitrary formulas. (For example, let the

�i equal true and all the other formulas equal false.) Roughly speaking, (4)

is valid if all the properties are safety properties, and if �i and E i modify

disjoint sets of variables, for each i . A more complicated version of the rule

allows the �i and �i to include liveness properties; and the condition that �i

and E i modify disjoint sets of variables can be replaced by a weaker, more

complicated requirement. Moreover, everything generalizes from two conjuncts

to n in a straightforward way. All the details can be found in [2].

6.3 Why Bother?

What have we accomplished by using a decomposition theorem of the form (4)?

As our clock example shows, writing a speci�cation as the conjunction of n

processes rests on an equivalence of the form

2[N 1 _ : : : _ N n]hv1;:::vn i � 2[N 1]v1 ^ : : : ^2[N n]vn

Replacing the left-hand side by the right-hand side essentially means changing

from disjunctive normal form to conjunctive normal form. In a proof, this re-

places _-composition with ^-composition. Such a trivial transformation is not

going to simplify a proof. It just changes the high-level structure of the proof

and rearranges the lower-level steps.

Not only does this transformation not simplify the �nal proof, it may add

extra work. We have to invent the environment speci�cations E i , and we have

to check the hypotheses of the decomposition theorem. Moreover, handling live-

ness can be problematic. In the best of all possible cases, the speci�cations E i

will provide useful abstractions, the extra hypotheses will follow directly from

existing theorems, and the decomposition theorem will handle the liveness prop-

erties. In this best of all possible scenarios, we still wind up only doing exactly

the same proof steps as we would in proving the implementation directly without

decomposing it.

This form of decomposition is popular among computer scientists because

it can be done in a pseudo-programming language. A conjunction of complete

speci�cations like �1 ^ �2 corresponds to parallel composition, which can be

written in a PPL as �1k�2. The PPL is often su�ciently inexpressive that all the

speci�cations one can write trivially satisfy the hypotheses of the decomposition

theorem. For example, the complications introduced by liveness are avoided if

the PPL provides no way to express liveness.

Many computer scientists prefer to do as much of a proof as possible in

the pseudo-programming language, using its special-purpose rules, before be-

ing forced to enter the realm of mathematics with its simple, powerful laws.

They denigrate the use of ordinary mathematics as mere \semantic reasoning".

Because mathematics can so easily express the underlying semantics of a pseudo-

programming language, any proof in the PPL can be translated to a semantic

proof. Any law for manipulating language constructs will have a counterpart

that is a theorem of ordinary mathematics for manipulating a particular class of

419Composition: A Way to Make Proofs Harder

formulas. Mathematics can also provide methods of reasoning that have no coun-

terpart in the PPL because of the PPL's limited expressiveness. For example,

because it can directly mention the control state, an invariance proof based on

ordinary mathematics is often simpler than one using the Owicki-Gries method.

Many computer scientists believe that their favorite pseudo-programming

language is better than mathematics because it provides wonderful abstrac-

tions such as message passing, or synchronous communication, or objects, or

some other popular fad. For centuries, bridge builders, rocket scientists, nuclear

physicists, and number theorists have used their own abstractions. They have

all expressed those abstractions directly in mathematics, and have reasoned \at

the semantic level". Only computer scientists have felt the need to invent new

languages for reasoning about the objects they study.

Two empirical laws seem to govern the di�culty of proving the correctness of

an implementation, and no pseudo-programming language is likely to circumvent

them: (1) the length of a proof is proportional to the product of the length of the

low-level speci�cation and the length of the invariant, and (2) the length of the

invariant is proportional to the length of the low-level speci�cation. Thus, the

length of the proof is quadratic in the length of the low-level speci�cation. To

appreciate what this means, consider two examples. The speci�cation of the lazy

caching algorithm of Afek, Brown, Merritt [3], a typical high-level algorithm,

is 50 lines long. The speci�cation of the cache coherence protocol for a new

computer that we worked on is 1900 lines long. We expect the lengths of the two

corresponding correctness proofs to di�er by a factor of 1500.

The most e�ective way to reduce the length of an implementation proof is to

reduce the length of the low-level speci�cation. A speci�cation is a mathematical

abstraction of a real system. When writing the speci�cation, we must choose the

level of abstraction. A higher-level abstraction yields a shorter speci�cation.

But a higher-level abstraction leaves out details of the real system, and a proof

cannot detect errors in omitted details. Verifying a real system involves a tradeo�

between the level of detail and the size (and hence di�culty) of the proof.

A quadratic relation between one length and another implies the existence of

a constant factor. Reducing this constant factor will shorten the proof. There are

several ways to do this. One is to use better abstractions. The right abstraction

can make a big di�erence in the di�culty of a proof. However, unless one has

been really stupid, inventing a clever new abstraction is unlikely to help by more

than a factor of �ve. Another way to shorten a proof is to be less rigorous, which

means stopping a hierarchical proof one or more levels sooner. (For real systems,

proofs reach a depth of perhaps 12 to 20 levels.) Choosing the depth of a proof

provides a tradeo� between its length and its reliability. There are also silly ways

to reduce the size of a proof, such as using small print or writing unstructured,

hand-waving proofs (which are known to be completely unreliable).

Reducing the constant factor still does not alter the essential quadratic nature

of the problem. With systems getting ever more complicated, people who try

to verify them must run very hard to stay in the same place. Philosophically

motivated theories of compositionality will not help.

420 L. Lamport

6.4 When a Decomposition Theorem is Worth the Bother

As we have observed, using a decomposition theorem can only increase the total

amount of work involved in proving that one speci�cation implements another.

There is one case in which it's worth doing the extra work: when the computer

does a lot of it for you. If we decompose the speci�cations � and � into n

conjuncts �i and �i , the hypotheses of the decomposition theorem become

�) E i and �i ^ E i) �i , for i = 1; : : : ;n. The speci�cation � is broken into

the smaller components �i . Sometimes, these components will be small enough

that the proof of �i^E i) �i can be done by model checking|using a computer

to examine all possible equivalence classes of behaviors. In that case, the extra

work introduced by decomposition will be more than o�set by the enormous

bene�t of using model checking instead of human reasoning. An example of such

a decomposition is described in [7].

7 Composing Speci�cations

There is one situation in which compositional reasoning cannot be avoided: when

one wants to reason about a component that may be used in several di�erent

systems.

The speci�cations we have described thus far have been complete-system

speci�cations. Such speci�cations describe all behaviors in which both the system

and its environment behave correctly. They can be written in the form S ^ E ,

where S describes the system and E the environment. For example, if we take

the component to be our clock example's hour process, then S is the formula 	h

and E is 	m . (The hour process's environment consists of the minute process.)

If a component may be used in multiple systems, we need to write an open-

system speci�cation|one that speci�es the component itself, not the complete

system containing it. Intuitively, the component's speci�cation asserts that it

satis�es S if the environment satis�es E . This suggests that the component's

open-system speci�cation should be the formula E) S . This speci�cation allows

behaviors in which the system misbehaves, if the environment also misbehaves. It

turns out to be convenient to rule out behaviors in which the system misbehaves

�rst. (Such behaviors could never be allowed by a real implementation, which

cannot know in advance that the environment will misbehave.) We therefore

take as the speci�cation the formula E
+�. S , which is satis�ed by a behavior in

which S holds as long as E does. The precise de�nition of
+�. and the precise

statement of the results about open-system speci�cations can be found in [2].

The basic problem of compositional reasoning is showing that the composi-

tion of component speci�cations satis�es a higher-level speci�cation. This means

proving that the conjunction of speci�cations of the form E
+�. S implies another

speci�cation of that form. For two components, the proof rule we want is:

E ^ S 1 ^ S 2) E 1 ^ E 2 ^ S

(E 1
+�. S 1) ^ (E 2

+�. S 2)) (E
+�. S)

421Composition: A Way to Make Proofs Harder

Such a rule is called a composition theorem. As with the decomposition theorem

(4), it is valid only for safety properties under certain disjointness assumptions; a

more complicated version is required if S and the S i include liveness properties.

Composition of open-system speci�cations is an attractive problem, having

obvious application to reusable software and other trendy concerns. But in 1997,

the unfortunate reality is that engineers rarely specify and reason formally about

the systems they build. It is naive to expect them to go to the extra e�ort of

proving properties of open-system component speci�cations because they might

re-use those components in other systems. It seems unlikely that reasoning about

the composition of open-system speci�cations will be a practical concern within

the next 15 years. Formal speci�cations of systems, with no accompanying veri�-

cation, may become common sooner. However, the di�erence between the open-

system speci�cation E
+�. M and the complete-system speci�cation E ^ M is

one symbol|hardly a major concern in a speci�cation that may be 50 or 200

pages long.

8 Conclusion

What should we do if faced with the problem of �nding errors in the design of

a real system? The complete design will almost always be too complicated to

handle by formal methods. We must reason about an abstraction that represents

as much of the design as possible, given the limited time and manpower available.

The ideal approach is to let a computer do the veri�cation, which means

model checking. Model checkers can handle only a limited class of speci�cations.

These speci�cations are generally small and simple enough that it makes lit-

tle di�erence in what language they are written|conventional mathematics or

pseudo-programming languages should work �ne. For many systems, abstrac-

tions that are amenable to model checking omit too many important aspects of

the design. Human reasoning|that is, mathematical proof|is then needed. Oc-

casionally, this reasoning can be restricted to rewriting the speci�cation as the

composition of multiple processes, decomposing the problem into subproblems

suitable for model checking. In many cases, such a decomposition is not feasible,

and mathematical reasoning is the only option.

Any proof in mathematics is compositional|a hierarchical decomposition of

the desired result into simpler subgoals. A sensible method of writing proofs will

make that hierarchical decomposition explicit, permitting a tradeo� between

the length of the proof and its rigor. Mathematics provides more general and

more powerful ways of decomposing a proof than just writing a speci�cation

as the parallel composition of separate components. That particular form of

decomposition is popular only because it can be expressed in terms of the pseudo-

programming languages favored by computer scientists.

Mathematics has been developed over two millennia as the best approach to

rigorous human reasoning. A couple of decades of pseudo-programming language

design poses no threat to its pre-eminence. The best way to reason mathemati-

cally is to use mathematics, not a pseudo-programming language.

422 L. Lamport

References

1. Mart��n Abadi and Leslie Lamport. The existence of re�nement mappings. Theo-

retical Computer Science, 82(2):253{284, May 1991.

2. Mart��n Abadi and Leslie Lamport. Conjoining speci�cations. ACM Transactions

on Programming Languages and Systems, 17(3):507{534, May 1995.

3. Yehuda Afek, Geo�rey Brown, and Michael Merritt. Lazy caching. ACM Trans-

actions on Programming Languages and Systems, 15(1):182{205, January 1993.

4. Bowen Alpern and Fred B. Schneider. De�ning liveness. Information Processing

Letters, 21(4):181{185, October 1985.

5. E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer

and System Sciences, 10:110{135, February 1975.

6. Edsger W. Dijkstra. A personal summary of the Gries-Owicki theory. In Eds-

ger W. Dijkstra, editor, Selected Writings on Computing: A Personal Perspective,

chapter EWD554, pages 188{199. Springer-Verlag, New York, Heidelberg, Berlin,

1982.

7. R. P. Kurshan and Leslie Lamport. Veri�cation of a multiplier: 64 bits and be-

yond. In Costas Courcoubetis, editor, Computer-Aided Veri�cation, volume 697 of

Lecture Notes in Computer Science, pages 166{179, Berlin, June 1993. Springer-

Verlag. Proceedings of the Fifth International Conference, CAV'93.

8. Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-

actions on Software Engineering, SE-3(2):125{143, March 1977.

9. Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-

ming Languages and Systems, 16(3):872{923, May 1994.

10. Leslie Lamport. How to write a proof. American Mathematical Monthly,

102(7):600{608, August-September 1995.

11. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.

Acta Informatica, 6(4):319{340, 1976.

423Composition: A Way to Make Proofs Harder

