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Abstract 

An ad-hoc network is the cooperative engagement of a 
collection of (typically wireless) mobile nodes without 
the required intervention of any centralized access point 
or existing infrastructure. To provide optimal commu- 
nication ability, a routing protocol for such a dynamic 
self-starting network must be capable of unicast, broad- 
cast, and multicast. In this paper we extend Ad-hoc 
On-Demand Distance Vector Routing (AODV), an algo- 
rithm for the operation of such ad-hoc networks, to offer 
novel multicast capabilities which follow naturally from 
the way AODV establishes unicast routes. AODV builds 
multicast trees as needed (i.e., on-demand) to connect 
multicast group members. Control of the multicast tree 
is distributed so that there is no single point of failure. 
AODV provides loop-free routes for both unicast and 
multicast, even while repairing broken links. We include 
an evaluation methodology and simulation results to val- 
idate the correct and efficient operation of the AODV 
algorithm. 

1 Introduction 

The idea of ad-hoc networks of mobile nodes dates back 
to the days of the DARPA packet radio network [II]. In 
more recent years, interest in these networks has grown 
along with improvements in laptop computers. These 
improvements include greater power, longer battery life, 
and decreased weight. Because so many laptop comput- 
ers are now in use, and because these computers are eas- 
ily portable due to their compact and lightweight design, 
the ability to communicate from one such computer to 
another, and from one such computer to a fixed network, 
is desired. 

To facilitate such communication, many routing pro- 
tocols have been developed [5, 10, 13, 14, 161. While each 
of these protocols is able to provide unicast capability 
to network nodes, none offers multicast communication 
ability. Although multicast is not necessary to establish 
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communication between nodes, it is frequently a desired 
feature for a network. A few protocols have been cre- 
ated to provide the multicast communication which these 
other protocols lack. The Lightweight Adaptive Multi- 
cast (LAM) protocol [9] is an example of one of these 
protocols. LAM is tightly coupled with the Temporally- 
Ordered Routing Algorithm (TORA) [14] as it depends 
on TORA’s route finding ability and cannot operate in- 
dependently. An advantage of LAM is that, since it 
is tightly coupled with TORA, it can take advantage 
of TORA’s route finding ability and thereby reduce the 
amount of control overhead generated. However, LAM 
has the disadvantage that it relies on a core node, thus 
has a central point of failure. Other protocols specified in 
internet drafts [3, 8, 221 are also able to provide multicast 
communication, but they too depend on an underlying 
routing protocol for correct operation. Additionally, the 
routing protocol described in [3] can suffer from transient 
routing loops. 

Unlike other protocols, the Ad-hoc On-Demand Dis- 
tance Vector Routing (AODV) [17, 181 protocol is ca- 
pable of unicast, broadcast, and multicast communica- 
tion. Unicast and multicast routes are discovered on- 
demand and use a broadcast route discovery mechanism. 
Broadcast data delivery is provided by AODV by using 
the Source IP Address and Identification fields of the IP 
header as a unique identifier of the packet. The destina- 
tion address of broadcast data packets is set to the well- 
known broadcast address 255.255.255.255. The redun- 
dant processing and propagation of a data packet multi- 
ple times by a single node is prevented because each node 
records the Source IP Address and Identification fields of 
the IP header of the packet. All additional copies of a 
data packet are discarded after the original reception. 

There are numerous advantages to combining unicast 
and multicast communication ability in the same pro- 
tocol. A protocol which offers both forms of commu- 
nication can be streamlined so that route information 
obtained when searching for a multicast route can also 
increase unicast routing knowledge, and vice versa. For 
instance, if a node returns a route for a multicast group 
to some source node, that source node, in addition to 
learning how to reach the multicast group, will also have 
learned of a route to the node returning that information. 
AODV can take advantage of this to enhance general 
routing knowledge. In a mobile environment, any reduc- 
tion in control overhead is a significant advantage for a 
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routing protocol. Additionally, combining both types of 
communication into a single protocol simplifies coding. 
Lastly, we expect that. continued improvements to the 
basic algorithm (e.g., for Quality of Service (QoS) appli- 
cations, for client/server discovery, or for utilizing asym- 
metric routing paths) will benefit both unicast and mul- 
ticast data transmission. AODV currently utilizes only 
symmetric links between neighboring nodes, but other- 
wise does not depend specifically on particular aspects 
of the physical medium across which packets are dissem- 
inated. 

The remainder of this paper is organized as follows. 
In Section 2, the basic data structures required for op- 
eration of the AODV algorithm are presented. Section 3 
describes the route request/route reply query cycle used 
for unicast route discovery. Section 4 describes, in de- 
tail, the multicast algorithm. Simulation results are pre- 
sented in Section 5. Section 6 describes our plans for 
future work, and finally Section 7 concludes the paper. 

2 Routing Tables 

Each node running AODV maintains two routing tables. 
The first of these is the Route Table. The route table 
is used for recording the next hop for routes to other 
nodes in the network. The fields of the route table are 
as follows: 

l Destination IP Address 
l Destination Sequence Number 
l Hop Count to Destination 
l Next Hop 
0 Lifetime 

New entries are placed in the route table following the 
reception of route requests (RREQs) and route replies 
(RREPs). When a node receives one of the listed mes- 
sage types, and it does not already have a route entry 
for the source of the message, it places an entry in the 
table listing the indicated information. Associated with 
each entry is a lifetime, indicating the length of time the 
route entry is valid. Routes are deleted from the table if 
they are not been updated or used within the indicated 
lifetime. 

The second routing table that a node maintains is 
the Multicast Route Table. This table contains entries 
for multicast groups of which the node is a router (i.e., 
a member of the multicast tree). Each entry in the mul- 
ticast route table contains the following information: 

l Multicast Group IP Address 
l Multicast Group Leader IP Address 
l Multicast Group Sequence Number 
l Hop Count to Multicast Group Leader 
l Next Hops 
0 Lifetime 

New entries are placed in this table after the node 
becomes a router for a multicast group. Associated with 
each Next Hop entry is an Enabled flag. This flag is used 
to indicate whether the link has been officially added on 
to the multicast tree. The Enabled flag of a next hop 
entry is set only after the activation of a route by the 
reception of a Multicast Activation (MACT) message, as 
described in Section 4.5.1. For multicast route entries, 
there may be more than one next hop entry. 

A third table, called the Request Table, is a small 
table that contains only two fields: 

l Multicast Group IP Address 
l Requesting Node IP Address 

Each node in the network that supports multicast 
routing maintains this table, regardless of whether it is 
a member of the multicast group. This feature is used 
solely for optimization and does not affect the correct 
operation of the protocol. When a node receives a RREQ 
to join a multicast group, it checks its request table for an 
entry for that group. If no entry for the group exists in 
the table, the node records the IP address of the group, 
together with the IP address of the node requesting a 
route to the group. Because the first node to request 
membership in a group typically becomes the multicast 
group leader, the entries in the table represent the group 
leaders. If a node later wishes to join a multicast group, 
it can check its request table to determine who the group 
leader is. If it has a route to that node, it can unicast 
its RREQ instead of broadcasting it. 

3 Route Discovery 

Route discovery with AODV is purely on-demand and 
follows a route request/route reply discovery cycle. When 
a node needs a route to a destination, it broadcasts a 
RREQ. Any node with a current route to that’desti- 
nation (including the destination itself) can unicast a 
RREP back to the source node. Route information is 
maintained by each node in its route table. Information 
gleaned through RREQ and RREP messages is kept with 
other routing information in the route table. AODV uses 
sequence numbers to eliminate stale routes. Routes with 
old sequence numbers are aged out of the system. 

AODV’s primary objectives are as follows: 
l To provide unicast, broadcast, and multicast capa- 

bility to all nodes in the ad-hoc network 
l To minimize the broadcast of control packets. 
l To disseminate information about link breakages to 

those neighboring nodes that utilize that link. 

The following section briefly describes route discovery 
in AODV. For further details, please see [18]. 

3.1 Reverse Route Establishment 

Route discovery with AODV is on-demand and occurs 
when a node requires a route to a destination for which it 
does not already have a recorded route. Such a node ini- 
tiates route discovery by broadcasting a RREQ packet [5]. 
The fields of the RREQ are as follows: 

< J-flag, R-flag, BroadcastJD, SourceAddr, 
Source-Seq#, DestAdds, DestSeq#, HopXnt > 

The J-flag and R-flag (join and repair flags, respectively) 
fields are used only for multicast group RREQs (de- 
scribed in Section 4.1). 

Each node in the network is responsible for main- 
taining two separate counters: a sequence number and 
a broadcast ID. The sequence number ensures the fresh- 
ness of routes to the node. The broadcast ID, together 
with the source node’s IP address, uniquely identifies 
each RREQ. The sequence number is increased when the 
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Figure 1: The RREQ / RREP Message Cycle. 

node acquires new neighbor information, and the broad- 
cast ID is incremented for each RREQ the node initi- 
ates. The node requesting the route places its IP ad- 
dress, current sequence number, and broadcast ID in the 
SourceAddr, Source-Seq#, and Broadcast-lD fields, re- 
spectively. The IP address of the destination and the last 
known sequence number for that destination are placed 
in the DestAddr and Dest-Seq# fields. 

A node receiving a RREQ first updates its route table 
to record the sequence number and next hop informa- 
tion for the source node. This reverse route entry may 
later be used to relay a RREP back to the source. The 
node then checks this table to see whether it has a route 
to the requested destination. In order to respond to a 
RREQ, a node must either be the destination itself, or 
must have an unexpired route to the destination with a 
sequence number at least as great as that indicated in 
the Dest-Seq# field of the RREQ. A node having such a 
route is said to have a ‘fresh enough’ route to the desti- 
nation. If this is the case, the node generates a RREP 
as described in Section 3.2 below. Otherwise, it rebroad- 
casts the packet to its neighbors. Figure l(a) illustrates 
the broadcasting of RREQs. 

A node may receive the same RREQ multiple times. 
When a node receives a RREQ, it records the source ad- 
dress and broadcast ID of the packet. If it later receives 
a RREQ with this same information, it does not process 
the packet but instead discards it. 

3.2 Forward Path Setup 

As stated above, a node can respond to a RREQ if it is 
the destination itself, or if it has a fresh enough route to 
the destination. When a node fulfills these requirements, 
it sends a RREP back to the source node. The RREP 
contains the following information: 

< R-flag, U-flag, DestAddr, DestSeq#, 
Hop-Cnt, Lifetime > 

The DestAddr field is set to the destination address 
specified in the RREQ, and the Dest-Seq# is set to the 
responding node’s record of the destination’s sequence 
number. The Hop-C& field is set, to the distance of the 
responding node from the destination, or zero if the des- 
tination itself sends the RREP. The R-flag and U-flag 
(repair and update flags) fields are used only for multi- 
cast routes, as described in Section 4.3. 

The responding node unicasts the RREP back along 
the next hop towards the source node. The node re- 

ceiving the RREP increments the Hop-Cnt field by one 
and then updates its entry for the destination node in its 
route table, thereby establishing the forward path to the 
destination. It then unicasts the RREP to its recorded 
next hop to the source node. This continues until the 
RREP reaches the source node. Figure l(b) is an ex- 
ample of the destination node responding by sending a 
RREP back to the source. Nodes that are not along the 
path determined by the RREP delete the reverse pointers 
after activezoute-timeout (3000 msec). 

Once the source node receives the RREP, it can use 
the route to send data packets to the destination. In the 
event that it receives a RREP in the future with a greater 
destination sequence number or a smaller hopcount, the 
source node updates its route table information for the 
destination and instead uses the new route. 

It is likely that an intermediate node will receive more 
than one RREP for a given source/destination pair. In 
this case, the node checks the Dest-Seq# and Hop-Cnt 
fields against its recorded information. If the destina- 
tion sequence number is greater than the node’s recorded 
value, or if the sequence number is the same but the 
Hop-&t is smaller, the node updates its information for 
the destination and forwards the RREP to the source. 
Otherwise, if the information contained in the RREP is 
not as good as that which the node already has in its 
route table and has sent to the source, it will discard the 
RREP and not forward it,. 

3.3 Local Connectivity Management 

Nodes learn of their neighbors through packet transmis- 
sions. When a node sends a packet, its neighbors hear 
the transmission and update their local connectivity in- 
formation to ensure that it includes this neighbor. In the 
event that a node has not transmitted anything within 
the last hellointerval msec, it broadcasts to its neigh- 
bors a Hello message. This informs its neighbors that it is 
still within their transmission range. A Hello message is a 
special unsolicited RREP which contains a node’s IP ad- 
dress and current sequence number. The Hello message 
is prevented from being rebroadcast outside the neigh- 
borhood of the node because it. contains a time to live 
(TTL) value of 1. Neighbors that receive this packet up- 
date their local connectivity information to include the 
node. The failure to receive any transmissions from a 
neighbor in the time defined by the periodic transmis- 
sion of allouedhello-loss Hello messages is an indi- 
cation that the local connectivity has changed, and the 
route information for this neighbor should be updated 
(see also Section 4.6.1). 

4 The Multicast Algorithm 

The multicast algorithm uses the same RREQ/RREP 
messages as previously described. Only one new mes- 
sage, the Multicast Activation (MACT), is needed. As 
nodes join the multicast group, a multicast tree com- 
posed of group members and nodes connecting the group 
members is created. Multicast group membership follows 
the model of the Mbone in that it is dynamic; nodes are 
able to join and leave at any time [6]. A multicast group 
leader maintains the multicast group sequence number. 
Multicast group members must also agree to be routers 
in the multicast tree. 
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(a) RREQ Message propagation (h) RRER sent back to source (c) Multicast Tree Branch Addition 

Figure 2: Multicast Join Operation. 

4.1 Route Request Message Generation 

A node sends a Route Request (RREQ) message when it 
wishes to join a multicast group, or when it has data to 
send to a multicast group and it does not have a route to 
that group. The Dest-Addr of the RREQ is set to the IP 
address of the desired multicast group, and the destina- 
tion sequence number is set to the last known sequence 
number for that group. If the node wishes to join the 
multicast group, it sets the J-flag of the RREQ; other- 
wise, it leaves the flag unset. .The RREQ may be either 
broadcast or unicast depending on the information avail- 
able at the source node. If the source node has a record 
of another node (the multicast group leader) previously 
requesting a route to that multicast group, and if the 
source node has a valid route to that node, it includes 
an extension field containing the IP address of the group 
leader and unicasts the RREQ along the known path to 
the group leader. Otherwise, if the source does not know 
who the group leader is or if it does not have a route to 
the group leader, it broadcasts the request. Figure 2(a) 
illustrates the propagation of a broadcast RREQ. 

Only a member of the desired multicast tree (i.e., a 
router for the group) may respond to a join RREQ. If 
the RREQ is not a join request, any node with a fresh 
enough route to the multicast group may respond. If 
a node receives a join RREQ for a multicast group of 
which it is not a member, or if it receives a RREQ and 
it does not have a route to that group, it rebroadcasts 
the RREQ to its neighbors. 

If the source node does not receive a RREP before 
timing out, it broadcasts another RREQ with Broad- 
cast-ID increased by one. If it does not receive a RREP 
to this RREQ, it continues broadcasting route requests 
up to rreqletries total rebroadcasts. After this num- 
ber of attempts, it can be assumed that either the multi- 
cast group is unreachable, or there are no other members 
of that multicast group in its connected portion of the 
network. In this case, the node becomes the multicast 
group leader, and initializes the group sequence number 
( i.e., sets equal to 1). If the original RREQ is unicast 
to the group leader and a RREP is not received, all fur- 
ther RREQs are broadcast, because it is possible that 
either the group leader is unreachable or that the node 
specified in the unicast RREQ is no longer the group 
leader. The Dest_Addr of each broadcast RREQ is set 
to the IP address of the multicast group, and the exten- 
sion containing the IP address of the group leader is not 
included. 

Nodes receiving a join RREQ check their request ta- 
ble for an entry for the requested multicast group. If 
there is no entry for the multicast group, the node en- 
ters the multicast group address, together with the IP 
address of the requesting node, in its request table. If 
there is no previous entry for the group, the requesting 
node may become the group leader. A node wishing to 
join a multicast group consults its request table to de- 
termine the group leader. 

4.2 Reverse Route Establishment 

As the RREQ is broadcast across the network, nodes 
set up pointers to establish the reverse route. Propaga- 
tion of non-join RREQs for multicast groups is similar 
to that described in Section 3.1. A join RREQ, however, 
requires a few processing differences. A node receiving a 
join RREQ maintains a corresponding route entry in its 
multicast route table, in addition to its (unicast) route 
table. The Enabled flag for this entry is set to FALSE, 
and only later is set to TRUE if the route is selected 
to be added to the multicast tree (see Section 4.5.1). A 
node can only respond to a join RREQ if it is a member 
of the multicast tree. The generation of route replies is 
described below. 

4.3 Route Reply Message Generation 

If a node receives a join RREQ for a multicast group, 
it may reply if it is a router for the multicast group’s 
tree and its recorded sequence number for the multicast 
group is at least as great as that contained in the RREQ. 
Additionally, the group leader can always reply to a join 
RREQ for its multicast group. The responding node 
updates its route and multicast route tables by placing 
the requesting node’s next hop information in the tables, 
and then generates a RREP. The node then unicasts the 
RREP back to the node indicated by the SowceAddr 
field of the received RREQ. Figure 2(b) illustrates the 
path of the RREPs to the source node. 

The RREP contains the last known sequence num- 
ber for the multicast group and the IP address of the 
multicast group leader. In addition, it includes a special 
extension field called Mgrouy-Hop. This field is initial- 
ized to zero and incremented each time the packet is for- 
warded. When t,he RREP is received by the source node, 
the Mgroup-Hop field indicates the distance (in hops) of 
the source node from the nearest member of the mul- 
ticast tree. The IP address of the group leader is also 
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placed in an extension field, called Group-LeaderAddr. 
As nodes along the path to the source node receive the 

RREP, they add both a route table and a multicast route 
table entry for the node from which they received the 
RREP, thereby creating the forward path. They incre- 
ment the HopXnt and Mgroup-Hop fields of the RREP 
and then continue forwarding the RREP back towards 
the source node. 

In the event that a node receives a unicast RREQ 
with its own IP address in the Multicast Group Leader 
extension, and if the node is in fact not the group leader, 
it simply ignores the request and does not propagate 
the RREQ any further. The source node will timeout 
and broadcast a new RREQ without the multicast group 
leader extension. This event should never happen; how- 
ever to protect against the possibility that a node has 
out-dated group leader information in its request table, 
a mechanism is included to handle a RREQ with such 
invalid information. 

4.4 Group Hello Messages 

The first member of the multicast group becomes the 
leader for that group. This node remains the group 
leader until it decides to leave the group, or until two 
partitions of the multicast tree merge (see Section 4.6.2). 
The multicast group leader is responsible for maintain- 
ing the multicast group sequence number and for dissem- 
inating this number to the multicast group. Periodically 
(every grouphellointerval seconds), the group leader 
broadcasts a Group Hello message. The Group Hello 
message is an unsolicited RREP with a TTL greater than 
the diameter of the network, so that it is propagated 
across the entire network. The Group Hello contains 
extensions which indicate the multicast group IP ad- 
dresses and corresponding sequence numbers of all mul- 
ticast groups for which the node is the group leader. 
The sequence number for the group is incremented for 
each Group Hello broadcast by the group leader. The 
Hop-&t of the Group Hello is initialized to zero and is 
incremented by each node that receives it, thereby indi- 
cating the distance in hops from the group leader. 

Nodes use the Group Hello information to update 
their request table. When a node receives the Group 
Hello, it checks its request table for an entry for the ad- 
vertised multicast group. If the table does not contain 
an entry for that group, the node enters the group and 
group leader IP addresses. Nodes that are members of 
the multicast tree use the Group Hello to update their 
current distance from the group leader. The Group Hello 
is also used for merging partitioned multicast trees, as is 
described in Section 4.6.2. 

4.5 Multicast Tree Maintenance 

Because the network consists of mobile nodes, links on 
the multicast tree are likely to break. Link breakages 
must be repaired in a timely manner to maximize multi- 
cast group connectivity. Multicast tree maintenance can 
be divided into three main categories: selecting and acti- 
vating the link to be added to the tree when a new node 
joins the group, pruning the tree when a node decides 
to leave the group, and repairing a broken link. Repair 
involves reestablishing branches when a link fails and 
reconnecting the tree after a network partition. 

At any interior node in a multicast tree, the route 
entry for the multicast group has multiple next hops. 
When a data packet addressed to the multicast group 
is received by a multicast tree member, the Source IP 
Address and Identification fields of the data packet’s IP 
header are recorded. The packet is then multicast by the 
node to its next hops. If the node is a group member, the 
packet is processed. A node on the multicast tree may 
receive the same data packet multiple times if it receives 
a data packet, retransmits the packet to its next hops, 
and then receives that same data packet when its next 
hops retransmit the packet to their next hops. The node 
will detect this redundancy by checking the Source IP 
Address and Identification fields of the IP header, and it 
will then discard the packet. 

4.5.1 Multicast Route Activation 

When a source node broadcasts a RREQ for a multicast 
group, it often receives more than one reply. Because 
each of the RREPs sets up a potential addition to the 
multicast tree, one and only one of the RREPs must be 
selected as the next hop. In this way, only one branch 
is added to the tree, and loops are thereby avoided. 
This is accomplished as follows. The source node waits 
rte-discovery-t imeout milliseconds after sending the 
RREQ before selecting a route. rte-discovery-timeout 
is a configurable parameter which may be set according 
to the size of the network. During this time period, the 
node keeps the received route with the greatest sequence 
number and the shortest number of hops to the nearest 
member of the multicast tree; it disregards other routes. 
At the end of this period, it enables the selected next hop 
in its multicast route table, and then unicasts a Multi- 
cast Activation (MACT) message to this selected next 
hop. Each MACT message contains the following fields: 

< P-flag, GL-flag, SourceAddr, Source-Seq#, 
DestAddr > 

The DeskAddr is set to the IP address of the mul- 
tic& group. The P-flag and GL-flag fields, which are 
used for pruning and choosing a new group leader, re- 
spectively, are explained in Sections 4.5.2 and 4.6.1. 

The next hop, on receiving the MACT message, like- 
wise enables the entry for the source node in its multi- 
cast route table. If this node is a member of the multi- 
cast tree, it does not propagate the MACT any further. 
However, if this node is not a member of the multicast 
tree, it will have received one or more RREPs from its 
neighbors. It keeps the best next hop for its route to the 
multicast group, unicasts a MACT to that next hop, and 
enables the corresponding entry in its multicast route 
table. This process continues until the node that orig- 
inated the RREP (because it was already a member of 
the tree) is reached. Nodes that had generated or for- 
warded RREPs delete the entry for the requesting node 
if they do not receive a MACT activating their route af- 
ter mtreebuild milliseconds. Figure 2(c) illustrates a 
multicast tree created in the described manner. 

The MACT message ensures that the multicast tree 
does not have multiple paths to any tree node (and, thus, 
is in fact a tree). Nodes only forward data packets along 
activated routes in their multicast route table. This pre- 
vents the possibility of data packets being delivered to 
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a source node by multiple next hops before a MACT 
message is received. 

4.52 Pruning 

During normal network operation, a multicast group mem- 
ber may decide to terminate its membership in the mul- 
tics& group. If the node is not a leaf node of the tree, 
it may revoke its member status but it must continue to 
serve as a router for the tree. Otherwise, if the node is a 
leaf node, it may prune itself from the tree by using the 
MACT message. In this case, the P&g (prune) of the 
MACT is set, and the Dest-Addr is set to the IP address 
of the multicast group. A leaf node necessarily has only 
one next hop for the multicast group, so it unicasts the 
MACT message to that next hop. After sending the mes- 
sage, the node removes all information for the multicast 
group from its multicast route table. The next hop, on 
receiving the MACT, notes the P-fiag, and consequently 
deletes the entry for the sender node from its multicast 
route table. If this node is itself not a member of the 
multicast group, and if the pruning of the other node 
has made it a leaf node, it can similarly prune itself from 
the tree by the method described. Tree branch pruning 
terminates when either a multicast group member or a 
non-leaf node is reached. 

4.6 Repairing Broken Links 

Multicast group tree links may break due to node mobil- 
ity or route expiration timers. Unlike in the unicast sce- 
nario, however, a link breakage necessarily triggers route 
reconstruction because of the necessity of keeping the 
multicast group members connected during the lifetime 
of the group. The re-establishment of tree links after 
breakages and network partitions is described below. 

4.6.1 Link Breakages 

Nodes promiscuously record the reception of any neigh- 
bor’s transmission. A link breakage is detected if no 
packets are received from the neighbor in the time 

hellointerval x (1 + alloued_helloloss). 

If a neighbor transmits other packets during that time, 
the neighbor is no longer obligated to transmit any Hello 
packets because the other packets serve the purpose of 
signaling its presence. The neighbor is also expected to 
forward any data packets received to their next hop(s) 
within retransmit-time msec. Failing to receive any 
transmissions from a neighbor will cause the expiration 
of the route timer associated with that route. 

When a link breakage is detected, the node down- 
stream of the break (i.e., the node that is further from 
the multicast group leader) is responsible for repairing 
the broken link. This distinction is made because, if 
both nodes tried to repair the link, it is possible they 
would establish different paths and thus form a loop. 
The downstream node initiates the repair by broadcast- 
ing a RREQ with Dest-Addr set to the IP address of 
the multicast group leader and with the J&g set. The 
DestSeq# is set to the last known sequence number of 
the multicast group, and the Multicast Group Hop Count 
(Mgroup-Hop) extension is set to the distance of the node 
from the multicast group leader. The only nodes which 

may reply to a RREQ with the MgroupJfop extension 
are nodes that are at least as close to the group leader 
as indicated by this field, or the group leader itself. This 
prevents nodes on the same side of the break as the ini- 
tiating node from responding, thereby ensuring a new 
route to the group leader is found. 

Because the node with which the initiating node lost 
contact is likely to still be nearby, the initial TTL value 
of the RREQ is set to a small value. In this way, the 
effects of the link breakage can be localized. If no RREP 
is received within rtediscoveryfimeout milliseconds, 
all successive RREQs (up to rreqletries additional at- 
tempts) are broadcast across the network. Any node that 
is a part of the multicast tree and that has a fresh enough 
multicast group sequence number and a hopcount to the 
multicast group leader smaller than that indicated by the 
Mgroup-Hop field can respond to the RREQ by unicast- 
ing a RREP. Forward path set up and subsequent route 
deletions occur as described in Sections 4.3 and 4.5.1. 

If no RREP is received at the source node after 
rreqretries attempts, it can be assumed that the net- 
work has become partitioned and the tree cannot (at this 
time) be reconnected. In this scenario, the partition of 
the tree that is downstream of the break is left without a 
group leader. A new group leader must be chosen. This 
occurs in one of two ways. If the node that initiated the 
route rebuilding is a multicast group member, it becomes 
the new multicast group leader. On the other hand, if it 
was not a group member and has only one next hop for 
the tree, it prunes itself from the tree by sending its next 
hop a MACT message with the P-flag set. On receiving 
the MACT, the node notes that the message came from 
its link to the group leader. This indicates that a net- 
work partition has occurred and that the next hop has 
pruned itself from the tree. If this node is a multicast 
group member, it becomes the new group leader. Other- 
wise, it also prunes itself from the tree, and this process 
will continue until a multicast group member is reached. 

In the event that. the node that initiated the rebuild- 
ing is not a group member and has more than one next 
hop, it cannot prune itself from the tree because doing 
so would leave the tree partitioned. Instead, it selects 
the first of its next hops and unicasts a MACT with the 
GL-flag (group leader) set. This flag indicates that the 
next group member to receive the MACT should become 
the new group leader. Hence, if the next hop receiving 
this message is a group member, it becomes the group 
leader. Otherwise, if it is not a group member, it simi- 
larly selects one of its next hops and unicasts a MACT 
with the GLJag set. This process continues until a mul- 
ticast group member is reached. 

After becoming the new multicast group leader, the 
node broadcasts a Group Hello across its connected part 
of the network (partition). This message has the U-flag 
(update) set, indicating that it is the new group leader 
and all nodes should update their multicast route table 
and request table information accordingly. 

After a multicast tree link breakage is discovered, if 
the node upstream of the break is a not a group member, 
and if the link breakage causes this node to become a leaf 
node, it sets a timer and waits for the tree branch to be 
reestablished through it. If it does not receive a MACT 
from a downstream node within route-expirationmsec, 
either another node was chosen as the next hop on the 
tree, or the network has become partitioned and the link 
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Parameter Name Meaning 
allouedhelloloss # of Allowed Hello Losses 
group_hellointerval Frequency of Group Hello Broadcasts 
hellointerval Frequency of Hello or Other Broadcasts 
maxiretrans Maximum # of Retransmissions 
mtreehuild Time to Wait to Receive a MACT 
retransmit-time Time to Wait for Data Packet Retransmissions 
revroutelif e Time to Keep Reverse Route Entries 
route-expiration Lifetime of Route Table Entry 
rreqretries Max # of RREQ Retransmissions 
rtediscoveryfimeout Max Time to Wait for a RREP 

Table 1: Simulated Parameter Values. 

could not be reestablished. In either case, it prunes itself 
from the tree in the manner described in Section 4.5.2. 

4.6.2 Reconnecting Partitioned Trees 

After the multicast tree becomes disconnected due to a 
network partition, there are two group leaders. If the 
partitions reconnect, a node eventually receives a Group 
Hello for the multicast group that contains group leader 
information that differs from the information it already 
has. If this node is a member of the multicast group, 
and if it is a member of the partition whose group leader 
has the lower IP address, it can initiate the reconnec- 
tion of the multicast tree. The node must already be 
a member of the group in order to minimize the num- 
ber of tree branches of the group, and its group leader 
must have the lower IP address so that only one of the 
group leaders attempt to rebuild the tree, thereby avoid- 
ing loops. 

If a node meets the above criteria, it unicasts a RREQ 
with the R&g (repair) set to its group leader. The 
R-flag indicates that the RREQ needs special handling. 
The group leader, after receiving such a RREQ, grants 
the node permission to rebuild the tree by unicasting 
a RREP back to the node. It notes that it has given 
this node rebuilding permission and must not grant any 
other node such permission unless the current rebuild 
fails. Again, this is to prevent multiple nodes from at- 
tempting repairs (which would likely cause the formation 
of loops). 

After receiving a RREP granting it rebuilding per- 
mission, the node unicasts a RREQ to the other group 
leader, using the node from which it received the Group 
Hello as the next hop. This RREQ contains the current 
value of the partition’s multicast group sequence number. 
When it receives the RREQ, the other group leader notes 
the set R&g, takes the larger of its record of the group’s 
sequence number and the received sequence number for 
the group, and increments this value by one. It then 
unicasts a RREP back to the source node. This group 
leader becomes the leader of the reconnected tree. As the 
RREP travels back to the source, it grafts a branch on 
to the tree. Having noted the R-flag, the next time the 
group leader sends a Group Hello, it sets the V-flag. All 
members formerly contained in the other partition (in- 
cluding the partition’s group leader) note the new group 
leader information, and the merging of the two trees is 
then complete. 

Value 
2 

5 set 
1000 msec 

10 
2000 msec 
1000 msec 
3000 msec 
3000 msec 

2 
1000 msec 

5 Simulations and Results 

We have simulated AODV using an event-driven, packet- 
level simulator called PARSEC [2], which was developed 
at UCLA as the successor to Maisie [l]. The PARSEC 
language is suited to the simulation of dynamic topolo- 
gies and routing algorithms. The main objective of the 
simulations is to show that AODV accurately builds a 
multicast tree on-demand, and that this tree can be used 
to efficiently route data packets between multicast group 
members. 

5.1 Simulation Environment 

Our simulations were run using a network composed of 
50 nodes. Nodes are initially placed randomly within 
a fixed-size L x L area. During the simulation, nodes 
are free to move anywhere within this area. Each node 
has a predefined speed between zero and one meter per 
second. It then travels towards a random spot within 
the L x L area. The node moves until it reaches that 
spot, then chooses a rest period from a uniform distribu- 
tion between 60 and 300 seconds. After the rest period, 
the node travels towards another randomly selected spot. 
This process repeats throughout the simulation, causing 
continuous changes in the topology of the underlying net- 
work. 

The communication radius R,,, of the nodes is a 
major contributor to the interconnection pattern of the 
ad-hoc network. In our simulations, the communication 
radius is held constant at 10m. Two nodes can com- 
municate directly, and are thus considered each other’s 
neighbors, if they are less than R,,, distance apart. If 
they are farther apart than R,,,, they cannot hear each 
others transmissions. 

The channel model used in the simulation is CSMA. 
Before beginning a transmission, carrier sensing is per- 
formed by a node to determine whether any of its neigh- 
bors are transmitting. If a node detects an ongoing trans- 
mission by a neighbor, it calculates an exponential back- 
off based on the number of times it has attempted the 
retransmission and waits this amount of time before sens- 
ing the channel again. A node attempts to transmit a 
packet maxzetrans times before dropping the packet. 

Nodes in the simulation may suffer from the hidden 
terminal problem [21]. If node A transmits to node B, 
and node C, unable to hear node A’s transmission, simul- 
taneously transmits to node B, the packets are assumed 
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Figure 3: Goodput Ratio as a Function of Speed. 

to collide at node B and both packets are dropped. 
Data sessions begin at randomly selected times through- 

out the simulation. Data packets are 64 bytes in length 
and the number of data packets transmitted per session 
is a geometric distribution with average 3,000. The data 
rate is 1.0 Mbit/set. The simulations were run for 300 
seconds, and new sessions are generated throughout the 
simulation. New data sessions are generated according 
to a geometric distribution with average of 25 minutes. 
This amounted to eight generated sessions per unicast 
simulation. In addition, once a node is a member of the 
multicast group, it generates new sessions for that mul- 
tic& group according to a geometric distribution with 
average of 12 minutes. This produced approximately fif- 
teen data sessions per multicast simulation. Because ses- 
sions are generated throughout the simulation, we keep 
track of and account for any data packets in transit at 
the end of the simulation. 

As stated earlier, multicast group membership is dy- 
namic. Non-group members are also able to create ses- 
sions and send data packets to members of the multicast 
group. 

Table 1 gives the values of the essential parameters 
for the AODV simulation. The parameter values were 
chosen because they minimize network congestion while 
allowing the algorithm to operate as quickly and as ac- 
curately as possible. 

5.2 Results and Discussion 

To examine the accuracy of AODV’s multicast opera- 
tion, we ran simulations of both unicsst and multicast 
communication. In [18], we present various simulations 
of AODV which demonstrate that AODV’s unicast op- 
eration is both accurate and efficient. The unicast and 
multicast simulations discussed here use the parameter 
values given in Section 5.1. We examine the results pro- 
duced by the simulations to show that AODV’s mul- 
ticast performance is comparable to its unicast perfor- 
mance. Particularly, we examine the goodput ratio and 
the amount of control overhead produced by the simu- 
lations. We define the goodput ratio as the number of 
data packets received compared to the number of data 
packets sent. 

In the first simulations, a room size of 50mx50m is 
used. This size room, with 50 nodes and a transmis- 
sion radius of lOm, allows the vast majority of nodes 
to be able to reach all other nodes, in one or more hops, 
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Figure 4: Control Overhead for Unicast Simulations. 

throughout the simulation. This enables us to verify that 
AODV builds a multicsst tree between group members 
and then maintains that tree throughout the lifetime of 
the group. With this room size there are few, if any, 
partitions of the multicast tree. We performed simula- 
tions of both unicast and multicast communication in 
the 50mx50m room. 

In the second set of multicast simulations described, 
the room size is increased to 85mx85m while the trans- 
mission radius is held at 10m. With a room this large 
there are many small network partitions which are iso- 
lated from each other. Many of these network parti- 
tions contain multicast group members. As the simula- 
tion progresses and nodes move about the room, we are 
able to verify that group members recognize when they 
come into contact with another partition and that conse- 
quently the multicast trees merge and one group leader is 
selected. A unicast simulation of the 85mx85m network 
is not included because, with such a sparsely connected 
network, it is a frequent occurrence that a route to a 
desired destination does not exist. 

Each class of simulations was run for six different 
speeds of node movement. The speeds ranged from 0 m/s 
to 1 m/s. For each movement speed, ten simulation runs 
were completed, where each run had a different initial 
network configuration. The results of these simulations 
were averaged together to produce the resulting graphs. 

In the multicast simulations, there is one multicast 
group which nodes may choose to join. No unicast ses- 
sions are created; all data traffic is multicast. As nodes 
decide to join the multicast group, they broadcast RREQs 
in the manner described in Section 4.1. Hence, at the be- 
ginning of the simulation, there are no multicast group 
members. The number of multicast group members then 
increases and decreases as nodes decide to join and leave 
the group. At any given time in the simulation, there are 
as many as 10 nodes which are members of the multicast 
group. A node may send data packets to the multicast 
group regardless of whether it is a member of the mul- 
ticast group. If a node is not a member of the group, it 
finds a route to the multicast group and then transmits 
its data packets along that route. In the unicast simula- 
tion, however, all generated sessions are point-to-point. 
Any node can potentially be selected as a sender or a 
receiver for a given session. 

Because nodes are frequently moving and routes be- 
tween nodes break, the goodput ratio is not likely to be 
100%. AODV does not retransmit data packets that are 
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Figure 5: Control Overhead for 50mx50m Multicast 
Simulations. 

lost due to node movement, and hence does not guaran- 
tee packet delivery. However, it does find good routes for 
IP’s best-effort delivery, and the goodput ratio is high. 

Figure 3 indicates the achieved goodput ratio for each 
of the simulation scenarios at different speeds. The 
50m x 50m multicast simulations show a slightly decreased 
goodput ratio compared to the results of the similar uni- 
cast simulations. This results from the fact that, while 
each data packet in the unicast simulations must only 
be received by one node, each data packet in the mul- 
ticast simulations must be received by multiple nodes. 
That is, every member of the multicast group in the 
connected portion of the network must receive the data 
packets. This results in an increased likelihood of colli- 
sions. Although nodes buffer packets while they rebuild 
routes, packets that are sent during reconstruction of tree 
branches have the possibility of being lost if the nodes 
on each end of the break are not a part of the recon- 
nected branch. This is due to the fact that there are no 
retransmissions of data packets. Hence there is a greater 
likelihood of packet loss in the multicast simulations since 
there are many more routes which must be maintained. 

The multicast simulations of the 85mx85m network 
demonstrates AODV’s operation under continual net- 
work partitions and merges. Because the connectivity 
of the network is so low, most multicast group members 
are singleton members of their partition, and hence they 
are group leaders. However, whenever two network parti- 
tions, each having one or more multicast group members, 
merge, the multicast trees must also merge and an over- 
all group leader must be chosen. Similarly, whenever a 
portion of the network with two or more group members 
partitions, where each of the network components then 
has one or more group members, the component with- 
out the group leader must choose a new group leader. 
In the simulations of speed 0 m/s, the goodput ratio is 
high because there were typically between only one and 
three multicast group members in a single partition, and 
so the data packets did not need to be delivered to a 
large number of group members. As the speed of move- 
ment of the nodes increases, however, the goodput ratio 
decreases. With such a small communication radius in 
a large room, group members often no sooner discover 
each other than they are out of transmission radius of 
each other. This is especially true in the .8 m/s and 
1.0 m/s simulations. Nodes reconnect the tree and start 
sending data packets, and then the tree quickly becomes 

Figure 6: Control Overhead for 85mx85m Multicast 
Simulations. 

partitioned again. The data packets in transit must be 
dropped. 

Figures 4, 5, and 6 represent the number of control 
packets that are generated during the simulations. The 
unicast simulations work as expected, with the number of 
RREQs and subsequent RREPs increasing as the rate of 
movement and link breakages increases. The 50mxSOm 
multicast simulations work similarly, with the number of 
RREQs, RREPs and MACTs increasing with the speed 
of movement. There are more RREQs produced in the 
multicast simulations than in the unicast simulations due 
to the greater number of routes which must be main- 
tained. 

Because there are many small clusters of nodes in 
the 85mx85m multicast simulations, each of which may 
contain multicast group members, there are many differ- 
ent group leaders for the multicast group. Consequently, 
there are many more Group Hellos generated in these 
simulations than in the comparable 50mx50m multicsst 
simulations, since the multicast group in the 50mxSOm 
network was generally not partitioned. However, because 
network connectivity in these networks is low and there 
are numerous isolated network components, the over- 
all impact of the increased number of Group Hellos is 
small. Like the other network scenarios, the 85mx85m 
multicast simulation shows an increase in the number of 
RREQs and RREPs as the speed of movement increases. 
However, after .6 m/s, these simulations show a slight de- 
crease in the number of RREPs and MACTs generated. 
With the faster movement speeds and the small transmis- 
sion radius relative to the room size, network partitions 
often only momentarily came into contact, and thus do 
not have enough time to reconnect two partitions of the 
same multicast tree. Since the trees do not have time 
to reconnect, one of the group leaders does not need to 
relinquish its group leader status. Hence the number of 
Group Hello messages produced begins to increase again 
for faster movement speeds. 

Packet loss in the simulations is the result of either 
a collision, or a node transmitting a packet to a node 
that has been its next hop along the path, but this next 
hop has already moved out of transmission range from 
the sending node and hence does not receive the packet. 
AODV is able to find a route to the multicast group each 
time it is needed, and it is able to successfully main- 
tain the links of the multicast tree for the lifetime of the 
group. The lifetime of the multicast group begins when 
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Figure 7: Network Snapshot Before and After Multicast Tree Merge. 

the first node requests to join the group and continues 
until the end of the simulation. If AODV were to be 
run over a MAC-sublayer protocol such as IEEE 802.11, 
data packets would rarely be dropped. However, AODV 
does not require such a protocol, because even without 
an underlying MAC-sublayer protocol, its performance 
is good. 

One other result from the simulations to examine is 
the route acquisition latency. The route acquisition la- 
tency is the time between when a node discovers it needs 
a route to some destination, and the time that it ac- 
quires that route and can begin using it. Because a 
node wishing to join the multicast tree must always wait 
route-discovery-timeout before selecting its next hop 
and unicasting a MACT, that timeout will be a lower 
bound on the latency for acquiring a multicast route. 
For more details on the route acquisition latency for uni- 
cast routes, please see [18]. 

As an illustrated example of the merging operation, 
Figure 7 represents a snapshot of the nodes in the sim- 
ulation immediately prior to and following a merge of 
two partitions of the multicast tree. In the figure, the 
solid diamonds are the group leaders, the partially filled 
smaller diamonds are multicast group members, and the 
unfilled circles are nodes in the network that are not 
group members. The dark solid lines represent links on 
the multicast tree, while the light dashed lines illustrate 
that the two nodes the lines connect are capable of com- 
munication. In Figure 7(a), nodes A, C, D, and E are 
group leaders for their partitions of the network. Node 
B is a member of node A’s group. Figure 7(b) shows 
the partition containing node A and C after the merge. 
C has joined the tree and given up its group leader sta- 
tus, and A has remained the leader of the group. Notice 
that no new branches between nodes A and B had to be 
added to the tree. 

6 Future Work 

There are many areas of investigation that are relevant 
to AODV. To begin, we plan to continue our simulations 
of AODV, including the utilization of different channel 

models to determine how the protocol will function in 
a variety of environments. Though we do not feel that 
differing channel models will have a significant impact on 
AODV’s relative performance and the results obtained 
from the simulations, we plan to complete simulations 
with differing channel models to verify these claims. 

One of AODV’s biggest sources of protocol overhead 
arises from the system-wide broadcasts that are used to 
disseminate RREQs. There are other protocols (notably 
CEDAR [20]) that establish a distinguished set of cores 
that are given the responsibility of managing the dissemi- 
nation of such control messages. We believe that AODV 
could benefit from the integration of such mechanisms 
into its route discovery process. 

On another front, it has been shown [4] that buffer- 
ing can be used to enable smooth handoff, for instance in 
the context of Mobile IP [19]. This same idea of smooth 
handoff and buffering can be adapted to the context of 
AODV. When a link is broken in a routing path, subse- 
quent re-establishment could be accompanied by delivery 
of some number of buffered packets. 

Clearly, security is a major concern. Key distribution, 
authentication, and encryption in the ad-hoc networking 
context remain largely unsolved problems. We would 
like to specify an authentication procedure to avoid the 
disruption of valid routes by malicious nodes. 

Reliable delivery of packets is another major concern. 
The current state of AODV does not provide for guaran- 
teed delivery of data packets. However, AODV could be 
enhanced to provide this service. AODV’s basic multi- 
cast algorithm elegantly lends itself to improvements al- 
ready done for multicast in networks of stationary nodes, 
such as those described for Scalable Reliable Multicast 
(SRM) in [7]. 

There have been numerous proposals for scaling ad- 
hoc network protocols to greater node populations. One 
such proposal is gathering sub-populations into clusters 
and restricting the dispersal of route table information 
based on whether a desired destination is in a local or 
in a remote cluster. To the extent that such techniques 
are beneficial, we believe that they can equally well be 
adapted for use with AODV. As the tradeoffs for control 
traffic between cluster maintenance and route discovery 
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become better understood, we will endeavor to incor- 
porate clustering techniques into AODV. The gains in 
scalability will probably be even more favorable for mul- 
ticast operations than for unicast, since our multicast 
algorithm places more reliance on network-wide broad- 
casts. 

We have recently defined Quality of Service (&OS) 
extensions for AODV to enable route establishment be- 
tween nodes that have certain well-defined traffic flow 
requirements. We would like to perform further simula- 
tions to verify our intuition that AODV will retain its 
high degree of efficiency and accuracy, even when the re- 
quirements for establishing valid routes are broadened to 
include QoS constraints. 

Mobile IP [15] has been standardized within the IETF 
to enable seamless roaming for mobile nodes. However, 
Mobile IP assumes that a mobile node has been assigned 
a home address and that there is a home agent that can 
receive packets destined for the mobile node. Since there 
may not be any such home network in an ad-hoc net- 
work, it is not easy to see how Mobile IP can be applied. 
However, if just one of the ad-hoc network nodes has 
connectivity to the global Internet, it becomes possible 
for every mobile node in the ad-hoc network to achieve 
connectivity to the global Internet. Furthermore, any 
such mobile node can send a Mobile IP Registration Re- 
quest to its home agent to describe its current care-of 
address, as described in [12]. We would like to augment 
AODV, and its recently proposed transit networking ex- 
tension, to implement this type of Mobile IP connectivity 
and make it available to alI AODV nodes. This would 
also allow AODV nodes to subscribe to Internet-based 
multicast groups. 

7 Conclusion 

We have presented a routing protocol for ad-hoc mobile 
networks that is capable of unicast, broadcast, and multi- 
cast communication. AODV has an advantage over other 
ad-hoc network routing protocols because it provides all 
three types of communication without being dependent 
on or requiring the use of any additional routing proto- 
cols. The main features of AODV are as follows: 

Unicast, Broadcast, and Multicast communication 
is provided. 
Routes are established on-demand with small delay. 
Multicast trees connecting group members are main- 
tained for the lifetime of the multicast group. 
Link breakages in active routes are efficiently re- 
paired or reestablished. 
All routes are loop-free through the use of destina- 
tion sequence numbers. 
Inactive routes are quickly aged out because they 
are likely to go stale. 

Through simulation, we have shown that AODV is 
able to obtain a high goodput ratio for both unicast 
and multicast communication. Additionally, it is able 
to offer this communication with a minimum of control 
packet overhead. AODV is an excellent choice for es- 
tablishing communication within an ad-hoc network. It 
is suitable for a variety of applications, including con- 
ferencing, emergency search-and-rescue operations, and 

community-based networking. We look forward to con- 
tinuing to enhance AODV by reducing the need for system- 
wide broadcasts, incorporating security and reliable de- 
livery mechanisms, exploring QoS extensions, and imple- 
menting Mobile IP connectivity. 

References 

PI 

PI 

131 

i41 

[51 

I61 

PI 

Pl 

PI 

PO1 

WI 

P21 

R. Bagrodia and W. Liao. Maisie: A Language for 
Design of Efficient Discrete Event Simulation. IEEE 
Transactions on Software Engineering, April 1994. 

R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, 
J. Martin, and H.Y. Song. PARSEC: A Parallel Sim- 
ulation Environment for Complex Systems. IEEE 
Computer, 31(10):77-85, October 1998. 

E. Bommaiah, A. McAuley, R. Talpade, and M.-K. 
Liu. AMRoute: Adhoc Multicast Routing Protocol. 
IETF Internet Draft, draft-talpade-manet-amroute- 
UU.tzt, August 1998. (Work in Progress). 

R. Caceres and V. N. Padmanabhan. Fast and 
Scalable Handoffs for Wireless Internetworks. Pro- 
ceedings of the 2nd ACM International Conference 
on Mobile Computing and Networking, pages 56-66, 
November 1996. 

M. S. Corson and A. Ephremides. A Distributed 
Routing Algorithm for Mobile Wireless Networks. 
ACM/Baltzer Wireless Networks Journal, 1(1):61- 
81, February 1995. 

H. Eriksson. MBONE: The Multicast Backbone. 
Communications of the ACM, 37(8):54-60, August 
1994. 

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, 
and L. Zhang. A Reliable Multicast Framework 
for Light-weight Sessions and Application Level 
Framing. IEEE/ACM Transactions on Networking, 
5(6):784-803, December 1997. 

M. Gerla, G. Pei, S.-J. Lee, and C.-C. Chiang. 
On-Demand Multicast Routing Protocol (ODMRP) 
for Ad-Hoc Networks. IETF Internet Drafi, draft- 
ietf-manet-odmrp-00.&t, November 1998. (Work in 
Progress). 

L. Ji and M. S. Corson. A Lightweight Adaptive 
Multicast Algorithm. Proceedings of IEEE GLOBE- 
COM, pages 1036-1042, Sydney, Australia, Decem- 
ber 1998. 

D. B. Johnson and D. A. Maltz. Dynamic Source 
Routing in Ad Hoc Wireless Networks. Tomasz 
Imielinski and Hank Korth, editors, Mobile Com- 
puting, pages 153-181. Kluwer Academic Publish- 
ers, 1996. 

J. Jubin and J. Tornow. The DARPA Packet Ra- 
dio Network Protocols. Proceedings of the IEEE, 
75(1):21-32, 1987. 

H. Lei and C. E. Perkins. Ad Hoc Networking with 
Mobile IP. Proceedings of the 2nd European Per- 
sonal Mobile Communications Conference, pages 
197-202, October 1997. 

217 



[13] S. Murthy and J. J. Garcia-Luna-Aceves. An Effi- 
cient Routing Protocol for Wireless Networks. Mo- 
bile Networks and Applications, 1(2):183-197, Octo- 
ber 1996. 

[14] V. D. Park and M. S. Corson. A Highly Adaptive 
Distributed Routing Algorithm for Mobile Wire- 
less Networks. Proceedings of IEEE Conference 
on Computer Communications, pages 1405-1413, 
Kobe, Japan, April 1997. 

[15] C. E. Perkins. IP Mobility Support. RFC 100& 
October 1996. 

1163 C. E. Perkins and P. Bhagwat. Highly Dynamic 
Destination-Sequenced Distance-Vector Routing 
(DSDV) for Mobile Computers. SIGCOMM ‘94: 
Computer Communications Review, 24(4):234-244, 
October 1994. 

[17] C. E. Perkins and E. M. Royer. Ad Hoc On Demand 
Distance Vector (AODV) Routing. IETF Internet 
Draft, draft-ietf-manet-aodv-O&txt, November 1998. 
(Work in Progress). 

1181 C. E. Perkins and E. M. Royer. Ad-hoc On- 
Demand Distance Vector Routing. Proceedings of 
the 2”d IEEE Workshop on Mobile Computing Sys- 
tems and Applications, pages 90-100, New Orleans, 
LA, February 1999. 

[19] C. E. Perkins and K.-Y. Wang. Optimized Smooth 
Handoffs in Mobile IP. Proceedings of the IEEE 
Symposium on Computers and Communications, 
Red Sea, Egypt, July 1999. 

[2OJ P. Sinha, R. Sivakumar, and V. Bharghavan. 
CEDAR: a Core-Extraction Distributed Ad hoc 
Routing algorithm. Proceedings of IEEE INFO- 
COM, pages 202-209, New York, NY, March 1999. 

[21] A. S. Tanenbaum. Computer Networks, Third Edi- 
tion, chapter 4, pages 263-264. Prentice HaU, En- 
glewood Cliffs, 1996. 

[22] c. w. wu, Y. C. Tay, and C.-K. Toh. Ad 
hoc Multicast Routing Protocol Utilizing Incress- 
ing Id-numbers (AMRIS) Functional Specification. 
IETF Internet Draft, draft-ietf-manet-amris-spec- 
OO.txt, November 1998. (Work in Progress). 

218 


