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Abstract

We compare the consensus and uniform consensus problems in synchronous systems. In c
consensus, uniform consensus is not solvable with byzantine failures. This still holds for the om
failure model if a majority of processes may be faulty. For the crash failure model, both consens
uniform consensus are solvable, no matter how many processes are faulty. In this failure mo
examine the number of rounds required to reach a decision in the consensus and uniform co
algorithms. We show that if uniform agreement is required, one additional round is needed to
and so uniform consensus is also harder than consensus for crash failures. This is based o
lower bound result for the synchronous model that we state for the uniform consensus pr
Finally, an algorithm is presented that achieves this lower bound.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of reaching agreement in a distributed system in the presence of failu
is a fundamental problem of both practical and theoretical importance. One vers
this problem, calledconsensus, considers that each process starts with an initial v
drawn from some domainV and all non faulty processes must decide on the same v
Moreover, if the initial values are the same, sayv, then the only possible decision value f
a non faulty process isv. Processors in the system are liable to fail by halting prematu
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(crash failures), by omitting to send or receivemessages when they should (omission
failures), or by exhibiting arbitrary behaviors (byzantine failures).

For many applications, the agreement condition of consensus, namely “no tw
faulty processes decide differently”, is inadequate as it doesnot restrict the decision value
of faulty processes: a faulty process is allowed to decide differently from non f
processes even if it fails a very long time after making a decision. Such disagree
may be undesirable since faulty processes mayreach inconsistent states and subseque
contaminate the whole system [16]. This is why in the atomic commitment of a distrib
database [3] where inconsistent decisions lead the database itself to become incons
which is clearly unacceptable—, one considers a strengthening of the agreement conditi
called theuniform agreementcondition, which precludes any disagreement even du
faulty processes. More formally, the uniform agreement condition specifies that n
processes (whether faulty or not) decide differently [18,19]. The problem that results
substituting uniform agreement for agreement in the consensus specification is cal
uniform consensusproblem.

Consensus originated from a problem in real-time process control (cf. [30,32]). I
context, process decisions are used to trigger some specific actions which must be
out within strict deadlines. The decisions of faulty processes are ignored in the hop
enough non faulty processes will give their common decisions, so that using their dec
alone, the action will be correctly carried out. The agreement condition is therefore s
enough for such distributed applications, in which the processes that have already d
cannot initiate irreversible actions on their own. This explains why agreement and unifo
agreement are relevant safety conditions, according to the type of applications.

No matter what the synchrony of the system is, the uniform agreement con
is trivially not achievable if processes may commit byzantine failures since this fa
model imposes no limitation on the possible behaviors, and consequently on the p
decisions of faulty processes. On the other hand, in a synchronous system withn processes
consensus is solvable in the presence oft byzantine failures ifn > 3t [25,30]. Dwork
et al. [11] showed that non-uniform agreement can be reached for crash, omission, a
byzantine failures, for the very realistic partially synchrony models, in which bound
relative process speeds and on message transmission times exist but are not know
hold only after some unknown time. For uniform consensus, things are quite diff
since a slow process cannot be distinguished from a crashed one in a non-synch
system, ensuring agreement with slow processes implies to ensure agreement w
crashed processes. In other words, any algorithm that solves consensus also solves
consensus for the crash failure model. Guerraoui [17] used this argument to show
many partially synchronous systems defined in terms of unreliable failure detecto
any algorithm that solves consensus also solves uniform consensus; the argument
applies to any partially synchronous model defined in [11]. In non-synchronous system
(i.e., both asynchronous and partially synchronous systems) with crash failures
is thereby no harm to concentrate on consensus instead of uniform consensus. On
other hand, some algorithms that solve consensus in synchronous systems may
the uniform agreement condition.

So it is interesting to investigate the differences between consensus and unifo
consensus in the context of synchronous systems, and the differences in requir
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for their solutions depending on the failure model. For byzantine and omission fai
these differences follow from classical results: in the byzantine failure model, consen
solvable if less than one third of processes are faulty [30]. As mentioned above, un
consensus is trivially not solvable in systems with byzantine failures no matter how
processes are faulty, and so is harder than consensus. In the omission failure
the comparison between the two problems is far less immediate. Perry and Toue
exhibited consensus algorithms that tolerate any number of faulty processes. For u
consensus, we can use the translation givenin [29], which transforms any algorithm
tolerant of crash failures into one tolerant of omission failures. The translation w
only if a minority of processes may fail. As long as this assumption holds, any algo
that solves uniform consensus in the crash failure model is converted by means
translation into an algorithm that solves uniform consensus and tolerates omission fa
In systems where half or more processes may fail, Neiger and Toueg [29] showe
uniform consensus cannot be solved with omission failures. As for the byzantine f
model, uniform consensus is therefore harder than consensus for the omission
model, because its solvability requires more restrictive conditions than consensus.

Our results in this paper concern the crash failure model. Both consensus and u
consensus are solvable in this model, no matter how many processes are faulty. W
that uniform consensus is still harder than consensus by considering the time comp
of these two problems. For that, we use the well-known synchronized round mo
computation, which can be emulated in any synchronous system. In the presenc
to t crash failures, uniform consensus as well as consensus can be solved withint + 1
rounds. Moreover, Merritt [27] showed thatt +1 is a lower bound on the number of roun
required for deciding in the worst case for both of these problems (see Chapter 6
and Section 3infra for more detailed references concerning this result). Following [9],
we refine this analysis by discriminating runs according to the number of failuresf that
actually occur. We prove that uniform consensus requires at leastf + 2 rounds wherea
consensus requires onlyf + 1 rounds iff is less thant − 1, and both consensus a
uniform consensus only requiref + 1 rounds iff = t − 1 orf = t .

As a matter of fact, our proof of the lower bound for early deciding in unifo
consensus still works when considering a weaker version of uniform consensus introduc
by Lamport in [21], which we callweak uniform consensus. This latter problem is simila
to uniform consensus, except that it requiresv to be the only possible decision value on
if all the initial values are equal tov andthere is no failure. Our lower bound thereby ho
for the weak uniform consensus problem, and so for any stronger problem. In partic
holds for the well-knownnon-blocking atomic commitmentproblem in database system

Merritt’s result [27] is actually stronger than the one described above since M
established thet +1 lower bound for the restricted failure model of “orderly crash failures”
in which faulty processes must respect the order specified by the protocol in se
messages to neighbors. Therefore, the lower bound for early deciding consensus
deduce from Merritt’s lower bound also holds for orderly crash failures. On the oth
hand, our proof of the lower bound for early deciding uniform consensus works
for (unordered) crash failures, and we do not know whether this result still holds fo
restricted class of orderly crash failures.
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We also present consensus and uniform consensus algorithms that achieve ou
bounds for early deciding. In such early deciding algorithms for consensus, pro
decide one round earlier than in any uniform consensus algorithm for most case�
f � t − 2). By refining time complexity analysis as in [9], we thus show that unifo
consensus is harder than consensus for the crash failure model.

The lower bound presented here is very close to the one established by Dolev, Re
and Strong [9]: they prove thatconsensusrequires at least min(f + 2, t + 1) rounds before
all correct processes canhalt, i.e., cease executing the algorithm. As already pointed
in [9], it is important to notice the difference between the time at which a process can d
and the time at which it can halt. From the worst case lower bound, we prove that con
requiresf + 1 rounds to decide; hence by the lower bound in [9], correct processes c
stop just after making a decision, in an early deciding algorithm. In turn, our lower b
result implies that, in any early stopping algorithm, processes must postpone decid
the very end of the computation in order to guarantee agreement uniformity.

Obviously, a lower bound for deciding is also a lower bound for stopping. On the
hand, a lower bound for consensus also holds for its (stronger) uniform version, n
uniform consensus. Consequently, the lower bound results presented in [9] and h
incomparablea priori. However, a simple reduction argument (cf. Section 4.2) shows
any lower bound for early deciding uniform consensus is also a lower bound for
stopping consensus. We can thus deduce the lower bound in [9] from ours, excep
casef = t −1 for which Dolev, Reischuk and Strong establish a better result. As our l
bound is actually optimal and because of this particular casef = t − 1, there cannot be
simple converse reduction which would allow us to deduce our lower bound from th
in [9].

From a technical viewpoint, our lower bound proof is inspired by the one by D
Reischuk, and Strong, and also proceeds by a double induction. Afterwards, an alte
proof has been given by Keidar and Rajsbaum [20], which uses a single induction bu
on the formalism oflayeringdeveloped by Moses and Rajsbaum [28]. Note that for fai
free runs, Lamport [22] also gives the two rounds lower bound, and in [23] he refine
analysis by attaching specific roles toeach process (proposer, acceptor, learner).

The paper is organized as follows. Section 2 contains the basic definitions and the form
description of the synchronized round model of computation. Section 3 gives the n
of rounds required for deciding in runs of a consensus algorithm with at mostf crash
failures. We investigate the same question for the uniform consensus problem in Sec
and in Section 5, we prove that these lower bounds are achievable. Section 6 provide
concluding remarks.

2. The model

We consider synchronous distributed systems consisting of a set ofn processesΠ =
{p1, . . . , pn}. Processes communicate by exchanging messages. Communications a
to point. Every pair of processes is connected by a reliable channel. In such system
can emulate a computational model calledsynchronous modelin which computations ar
organized in rounds of information exchange. On each process, a round consists of m
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sending, message receipt, and local processing. We now recall the formal description
the synchronous model (see Chapter 2 in [26] for a detailed presentation): each processpi

has a buffer denotedbufferi that represents the set of messages that have been senpi

but that are not yet received. An algorithmA consists for each processpi ∈ Π of the
following components: a set of states denoted bystatesi , an initial stateiniti , a message
generation functionmsgsi mappingstatesi × Π to a unique (possiblynull) message, an
a state transition functiontransi mappingstatesi and vectors (indexed byΠ ) of messages
to statesi . In any execution ofA, each processpi , in lock-step, repeatedly performs th
following two steps:

(1) Apply msgsi to the current state to generate the messages to be sent to each p
Put these messages in the appropriate buffers.

(2) Apply transi to the current state and the messages present inbufferi to obtain the new
state. Remove all messages frombufferi .

The combination of these two steps is called around of A. Note that in this model, a
algorithm specifies thesetof messages processes have to send in each round, but n
order in which messages are sent.

We distinguish some of the process states ashalting states: they are those from whic
no further activity can occur. When reaching a halting state of algorithmA, a process stop
participating toA. That is, from a halting state no messages are sent and the only
transition is a self-loop.

A run of A is an infinite sequence ofA’s rounds. Apartial run of A is a finite prefix of
a run ofA.

2.1. Failures

Processes can fail by crashing, that is by stopping in the middle of their execu
A process may crash before or during some instance of the steps described
A process may thus succeed in sending only a subset of the messages specifie
sent. This can beanysubset since in this model, a process does not produce its mes
sequentially. After crashing at a round, a process does not send any message in an
subsequent rounds.

A process is said to becorrect in a run if it does not crash; otherwise it is said to
faulty. The set of all the runs of an algorithmA in which at mostt processes crash
denoted byRun(A, t).

2.2. Consensus and uniform consensus

In the consensus problem, each process starts with an input value from a
value setV and must reach an irrevocable decision on one value ofV . The consensus
specification is defined as the set of all the runs that satisfy the following conditions:

Validity: If all processes start with the same initial valuev, thenv is the only possible
decision value.
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Agreement: No two correct processes decide on different values.
Termination: All correct processes eventually decide.

As explained in Section 1, this specification allows processes to decide differently if o
of them fails. To avoid such disagreements, the agreement property can be strength

Uniform agreement: No two processes (whether correct or faulty) decide on diffe
values.

The specification that results from replacing agreement by uniform agreement in th
consensus specification is calleduniform consensus. We say that an algorithmA toleratest
crashes and solves(uniform) consensusif all the runs inRun(A, t) satisfy the validity,
termination, and (uniform) agreement conditions.

3. Lower bounds for consensus

In this section, we concentrate on the consensus problem and we first recall some we
known lower bound results, namely the lower bound in the worst case [27] and th
for early stopping [9]. We then recall a standardconsensus algorithm, originally describ
in [24], in which all processes that ever decide have decided by the end of roundf + 1
in all the runs with at mostf crash failures. Finally, from the worst case lower bound,
easily deduce thatf + 1 is indeed a lower bound for deciding in consensus algorithm

3.1. Lower bound in the worst case

A fundamental result about consensus in synchronous systems is that ifn � t + 2, then
any consensus algorithm that toleratest failures must runt + 1 rounds in some executio
before all processes that ever decide have decided. This lower bound has been or
established for consensus in the case of byzantine failures by Fischer and Lynch [13
The result was extended first to the case of byzantine failures with authenticati
Dolev and Strong [10] and by DeMillo, Lynch, and Merritt [8], and then to crash fail
by Merritt [27].1 Alternative proofs of this worst case lower bound based on bivale
arguments have been then given by Aguilera and Toueg [1], Gafni [15], and Mose
Rajsbaum [28]. Clearly, this worst case lower bound also holds for the stronger pr
of uniform consensus. Moreover, it is well-known that there are algorithms for uni
consensus (and so for consensus) toleratingt crash failures, and in which processes dec
in t + 1 rounds. The lower bound oft + 1 rounds is thereby tight for both consensus a

1 The lower bounds in [10,27] have been actually established for thebyzantine agreementproblem (also called
terminating reliable broadcast), but can be easily adapted to the consensus problem. As mentioned in Sec
Merritt [27] proved thet + 1 lower bound for the restricted class of “orderly crash failures” in which faulty
processes must respect the order specified by the protocol in sending messages to neighbors. Merri
bounda fortiori holds for our model of (unordered) crash failures.
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uniform consensus. With respect to the worst case time complexity, consensus and u
consensus are therefore two equivalent problems.

3.2. Lower bound for early stopping

Following [9], we refine the analysis by discriminating runs according to the numb
of failures thatactually occur: we consider the number of rounds required to decide
over all the runs of an algorithm that toleratest crash failures, but over all the runs
the algorithm in which at mostf processes crash for anyf , 0 � f � t . For consensu
algorithms, Dolev, Reischuk, and Strong [9] give a lower bound on the number of ro
required for processesto halt in the runs with at mostf faulty processes. More precise
they prove the following theorem:

Theorem 3.1 (Dolev et al., 1990).LetA be a consensus algorithm that toleratest process
crashes. Ifn � t + 2 then for eachf , 0 � f � t , there exists a run ofA with at mostf
crash failures such that some process has not halted before roundmin(t + 1, f + 2) in that
run.

As pointed out by Dolev, Reischuk, and Strong in [9], it is important to notice th
process may decide at some round without reaching a halting state, namely, it may contin
to send messages and to participate to the consensus algorithm in subsequent rounds
other words, there may be a difference between the time at which a process decides
time at which it halts. Indeed, Theorem 3.1 gives the number of rounds until the proc
all stop but says nothing about the time when processes decide. Note that obviously,
bound on deciding is also a lower bound on halting, but notvice-versa.

In this paper and contrary to [9], we consider the time at which processes decid
not the time at which they halt. This is motivated by the following reasons. Firstly, fro
practical viewpoint, the time at which decisions are taken is a significant time measure
is indeed quite important to determine the time when decisions are available in the s
Secondly, since thet +1 worst case lower bound result considers the decision time an
the halting time, it seems more relevant to keep the same time complexity measure
refining efficiency analysis of consensus and uniform consensus algorithms.

3.3. An early deciding algorithm

We now present a well-known early deciding consensus algorithm devised by La
and Fischer [24] which will prove that the lower bound of Theorem 3.1 does not hold
“early stopping” is replaced by “early deciding”.

In the algorithm which we callEDAC, each processpi maintains a variableFailed
containing the set of processes thatpi detects to have crashed. Processpi learns thatpj

crashes during a round ifpi receives no message frompj at this round. At the end of ever
round, each processpi updates its variableFailed. If Failed remains unchanged durin
round r, that is if pi detects no new crash failure, and ifpi has not yet decided, the
pi decides at the end of roundr. Any process that decides onv at roundr broadcasts a
(D,v) message at roundr + 1 to inform the other processes of its decision and to force
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rounds∈ N , initially 0
W ⊆ V , initially the singleton set consisting ofpi ’s initial value
done, a Boolean, initiallyfalse
halt, a Boolean, initiallyfalse
Rec_Failed⊆ Π , initially ∅
Failed⊆ Π , initially ∅
decision∈ V ∪ {unknown}, initially unknown

msgsi
if ¬halt then

if ¬donethen sendW to all processes
else send(D,decision) to all processes

transi
if ¬halt then

rounds:= rounds+ 1
let Xj be the message frompj , for eachpj from which a message arrives
if donethenhalt := true
if some message(D,v) arrives then

decision:= v

done:= true
elseW := W ∪ ⋃

j Xj

Rec_Failed := Failed
Failed := {pj : no message arrives frompj at the current round}
if Rec_Failed= Failed then

decision:= min(W)

done:= true

Fig. 1. TheEDACalgorithm.

processes that have not yet decided to decide onv in turn. The code ofEDAC is given in
Fig. 1 (in this code null messages do not appear in themsgsi ’s).

Among f + 1 rounds of a run with at mostf faulty processes, there must be so
round at which no process fails. So each processp definitely detects a failure free roun
(maybe erroneously), and at the end of such a round,p knows all the initial values in play
at this time. The other processes cannot learn any other initial values; hence it is safe forp

to decide at the end of the first round at which it has detected no new failure. The re
referred to [24] for a complete correctness proof ofEDAC.

TheEDACalgorithm proves that thef + 2 lower bound of Theorem 3.1 does not ho
when considering the question of early deciding instead of the one of early stopping
shows that there is an actual difference between the time at which a process can
and the time at which it can halt (this observation has been already mentioned by Dol
Reischuk, and Strong in [9]). As exemplified by theEDAC algorithm, it is not safe for a
process to stop just after making a decision: it may be the case that some processpi receives
a new information from processq at some roundr in which pi detects no new failure
and this information affectspi ’s decision value. Since some processpj may receive no
message fromq (becauseq fails) at roundr, the only waypi is certain that the informatio
gets atpj is thatpi itself sends it. Thus, processpi has to send this information topj , and
so cannot stop as soon as it makes a decision.
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3.4. A lower bound for early deciding

We now prove that theEDACalgorithm is optimal, i.e., at leastf +1 rounds are require
for deciding in some run with at mostf faulty processes. This result is a straightforw
consequence of thet + 1 worst case lower bound.

Theorem 3.2. LetA be a consensus algorithm that toleratest process crashes. Ifn � t +2
then for eachf , 0 � f � t , there exists a run ofA with at mostf crashes in which at leas
one process decides not earlier than during roundf + 1.

Proof. Let f be any fixed element in{0, . . . , t}. The worst case lower bound [27] recall
in Section 3.1 applied to the algorithmA, seen as a consensus algorithm toleratingf crash
failures, shows that there exists a run ofA with at mostf crashes in which some corre
process decides not earlier than during roundf + 1. �

Compared with the lower bounds stated in Theorem 3.1, this result shows that fo
of the cases (0� f � t − 2), it takes at least one additional round to halt after makin
decision in early deciding algorithms for consensus.

4. A lower bound for early deciding uniform consensus

We now study the question of early deciding for uniform consensus. As the un
consensus specification is stronger than the one of consensus, thef + 1 lower bound
stated in Theorem 3.2a fortiori holds for uniform consensus. In this section, we re
this result by proving a lower bound for uniform consensus greater thanf + 1. Since the
t + 1 lower bound for consensus is achievable (for example, by theEDACalgorithm), this
thereby shows that the uniform consensus problem is harder than the consensus p
in the context of synchronous model with crash failures. We then show how to d
the lower bound for early stopping consensus established by Dolev, Reischuk, and
(Theorem 3.1) from our lower bound for early deciding uniform consensus, except
casef = t − 1. Finally, we observe that our lower bound result also applies to o
agreement problems with a uniform agreement property, and in particular to the
blocking atomic commitment problem.

4.1. A lower bound for early deciding uniform consensus

Theorem 4.1. Supposet � 1 and letA be a uniform consensus algorithm that toleratet
process crashes. For eachf , 0 � f � t , there exists a run ofA with at mostf crashes in
which at least one process decides not earlier than during roundf + 2 if f � t − 2, and
not earlier than during roundf + 1 otherwise.

Here we use the same proof technique as in [9]. However, contrary to the comput
model in [9], there is here no special halting states, and so a process which has stop
to send messages has necessarily crashed. This makes the proof simpler at variou
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but requires to have more processes that can be faulty in the construction of some s
runs. This latter point has an actual impact whenf = t − 1: in this case, our lower boun
for early deciding is smaller than the one in [9] for early stopping. All these differe
lead us to present the complete proof of Theorem 4.1 even if it is inspired by the one
in [9].

Before proving the theorem, we first introduce some additional definitions and notation
Let ρ be a run of an algorithmA. For anyk � 1, we defineρ[k] to be the partial run ofA
that consists of thek first rounds ofρ. Theconservative extensionof ρ[k] is the unique
run ρ′ of A such thatρ′[k] = ρ[k] and no process crashes after roundk. We say thatρ
is f -regular if there are at mostf processes that crash inρ and for everyk, 1� k � f ,
there are at mostk processes that crash inρ[k]. If a process crashes at roundk and fails to
send messagem, and if no process crashes after roundk, thenm is said to be alast unsent
message inρ.

For any initial configurationC, there exists a unique failure free run ofA that starts
from C; this run is denoted byrC . On the other hand, for any processp, A admits a unique
runρ

p
C starting fromC and in which onlyp is faulty and crashes from the beginning; th

run is calledthe silencing ofp fromC.
If ρ andρ′ are two runs ofA, we say thatρ is indistinguishable fromρ′ with respect to

processp, denotedρ ∼p ρ′, if p has the same initial state and performs the same sequ
of actions inρ andρ′.

Finally, if A solves the uniform consensus problem, then for any runρ of A, dec(ρ)

denotes the unique value that is decided inρ.

Proof of Theorem 4.1. Since our concern is a lower bound result, we can restrict
attention to the binary uniform consensus problem, i.e.,V = {0,1}.

First, in the caset = 1, the lower bound in Theorem 4.1 is captured by Theorem
and so is already proved.

Thus we now assume thatt � 2. Let A be any algorithm that solves the unifor
consensus problem and that toleratest crashes. For any integerf , 0� f � t , consider the
set of all runs ofA in which at mostf processes crash. There are three cases to cons

(1) f = 0. We give a straightforward proof in this case. Assume for the sak
contradiction that in every failure free run ofA all the processes decide at the first rou
Let C0 andCn denote the initial configurations such that all processes have initial va
and 1, respectively. Consider a chain of initial configurationsC0,C1, . . . ,Cn spanningC0

to Cn such that any two consecutive configurationsCi−1 andCi differ only in the initial
value of processpi . Let ri denote the failure free run ofA starting fromCi , i.e.,ri = rCi .
We now prove by induction oni that the value decided in eachri is 0. By validity, all
processes must decide 0 inr0. Let i be such that 1� i � n, and suppose that the decisi
value inri−1 is 0. Letp be a process different topi ; consider the runσi−1 starting from
Ci−1 such that (1) all the processes are correct except processesp andpi , (2) pi succeeds
in sending only one message top and then crashes, and (3)p crashes just at the beginnin
of the second round. Sincet � 2 andA toleratest crashes,σi−1 is a run ofRun(A, t), and
so satisfies the three conditions of uniform consensus. The first roundsσi−1[1] andri−1[1]
are indistinguishable to processp. By inductive hypothesis,p decides 0 inri−1[1], and so
in σi−1[1]. Now, we consider the runτi that is identical toσi−1 except thatτi starts fromCi
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(instead ofCi−1). Sincen � 3, there exists some processq such thatq �= p andq �= pi . For
such a processq , we haveτi ∼q σi−1. This implies thatdec(τi) = dec(σi−1) = 0. The first
roundsτi[1] andri [1] are indistinguishable top, and sop decides 0 inri . Sodec(ri ) = 0,
as needed. In particular,dec(rn) = 0. This contradicts that the decision value inrn must
be 1 because of the validity condition.

(2) f ∈ {1, . . . , t − 2}. First, we use a bivalency argument borrowed from [14] to sh
that there is an initial configurationC from which the failure free run and the silencin
of some process lead to two different decision values (Lemma 4.2). We then proce
contradiction: we first show that if in all the runs ofA with at mostf crashes, all processe
decide by the end of roundf + 1, then any last unsent message of af -regular run can
be “added” without altering the decision value (Lemma 4.3). By successive applicati
of this intermediate result, we obtain that all thef -regular runs starting from some initi
configurationC lead to the same decision value as the failure free runrC . In particular,
any silencing of some process fromC has the same decision value asrC , contradicting the
preliminary bivalent result (Lemma 4.2).

(3) f = t − 1. The case studied above provides a run with at mostt − 2 crashes (and
so with at mostt − 1 crashes), in which uniform consensus is achieved not earlier th
roundf + 1 = t .

(4) f = t . In this case, the lower bound immediately follows from thet + 1 worst case
lower bound. �
Lemma 4.2. There is an initial configurationC and there is some processp such that
dec(rC) �= dec(ρp

C).

Proof. By the standard bivalency argument of [14], there are two initial configuratioC

andC′ which differ only by the initial value of some processp and such that (1)dec(rC) �=
dec(rC ′). Clearly, for any processq �= p, we haveρ

p
C ∼q ρ

p

C ′ , and thus (2)dec(ρp
C) =

dec(ρp

C ′). From (1) and (2), it follows thatdec(rC) �= dec(ρp
C) or dec(rC ′) �= dec(ρp

C ′). �
Lemma 4.3. Let f be an integer,0 � f � t − 2. Suppose that in all the runs ofA with at
mostf crashes, all the processes that are still alive at the end of roundf +1 have decided
by the end of roundf + 1. Let σ be anf -regular run ofA and letm be any last unsen
message ofσ . If τ is the run ofA which is identical toσ except thatm is sent inτ , then
dec(σ ) = dec(τ ).

Proof. By definition ofτ and sinceσ is f -regular,τ is also anf -regular run ofA. Thus,
afterf + 1 rounds, all the processes that are still alive have decided in bothσ andτ . Note
that any process is correct inτ iff it is correct inσ .

Letp be the process that fails to sendm andq be the destination ofm. Letk be the round
of σ during whichp crashes. The cases wherek > f + 1 are trivial. Thus, we assume th
k � f + 1. The proof is by decreasing induction onk, starting withk = f + 1 and ending
with k = 1. It will be convenient to notel the complement tok in f +1, i.e.,l = f +1− k.

Basis: k = f + 1. Sincen − f � n − (t − 2) � 3, there exists at least one proce
different from q , that is correct in bothσ and τ . For such a processs, we have
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σ [f + 1] ∼s τ [f + 1]. This implies thats decides the same value inσ andτ . Therefore,
dec(σ ) = dec(τ ).

Inductive step: Assumek � f . Suppose the claim is true for any last unsent messa
roundi of anyf -regular run, withk + 1 � i � f + 1. Runσ is f -regular, and so there a
at mostk processes that crash inσ [k]. Sincek + 1 + l = f + 2 andf + 2 < n, we can
find l processesr1, . . . , rl which are different fromq , and which do not crash inσ [k]. For
convenience, we noteq = r0. Let σ ′ be the run that is identical toσ , except that:

• At roundk +1, r0 succeeds in sending a message only tor1 and then crashes. No oth
processes fail in this round.

• At roundk +2, r1 succeeds in sending a message only tor2 and then crashes. No oth
processes fail in this round.
...

• At roundf + 1, rl−1 succeeds in sending a message only torl and then crashes.
• Processrl crashes at the beginning of roundf + 2, just before sending any messa

No other processes fail in this round and in the later rounds.

Runσ is regular, and thus there are at mostk + l + 1 = f + 2 crash failures inσ ′. Since
f � t − 2, σ ′ is in Run(A, t).

Let σ 1, . . . , σ l denote the conservative extensions ofσ ′[k + 1], . . . , σ ′[f + 1],
respectively. We can safely extend this notation toσ 0 = σ becausem is a last unsen
message ofσ . Sinceσ is regular, there are at mostk + i crash failures inσ i . In particular,
there are at mostf crash failures inσ l−1. Processrl is correct inσ l−1, and thus decide
by the end of roundf + 1 in σ l−1. Moreover,σ ′, σ l−1, andσ l are indistinguishable torl
up to the end of roundf + 1. This shows that processrl decides the same value by the e
of roundf + 1 in each of these three runs. Since the agreement property is uniform
implies that

dec
(
σ l−1) = dec

(
σ l

) = dec
(
σ ′). (1)

On the other hand, in each runσ i , 1 � i � l, the message thatri−1 fails to send to
any processs /∈ {p, r0, r1, . . . , ri} at roundk + i is a last unsent message ofσ i . Moreover,
σ 0, σ 1, . . . , σ l−1 aref -regular runs. By successive application of the inductive hypoth
we obtain thatdec(σ i−1) = dec(σ i) for any indexi such that 1� i � l − 1. Finally, this
shows that

dec
(
σ l−1) = · · · = dec

(
σ 1) = dec

(
σ 0). (2)

Equalities (1) and (2) imply thatdec(σ ) = dec(σ ′).
Now from run τ , we use a similar construction of regular runs: letτ ′, and

τ0 = τ, τ1, . . . , τ l denote the so-defined regular runs ofA. By a similar argument to thos
used withσ ′, σ l−1, andσ l , we show that

dec
(
τ l−1) = dec

(
τ l

) = dec
(
τ ′). (3)

By repeated applications of the inductive hypothesis, we get that

dec
(
τ l−1) = · · · = dec

(
τ1) = dec

(
τ
)
. (4)

This implies thatdec(τ ) = dec(τ ′).
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On the other hand, lets be a process that is correct in bothσ ′ andτ ′ (such a proces
exists sincef + 2 � t < n). Runsσ ′ andτ ′ are indistinguishable tos, i.e.,σ ′ ∼s τ ′. This
implies thatdec(σ ′) = dec(τ ′). Sodec(σ ) = dec(τ ), as needed. �

For any t � 1 and anyf , 0 � f � t , the lower bound for early deciding unifor
consensus in Theorem 4.1 is equal to the one for early stopping consensus in Theor
except the casef = t − 1. In this case, we have only proved thatt rounds are necessary
decide in a uniform consensus algorithm (as well as in consensus algorithms) whilet + 1
rounds are required before halting. Now theimportant point is to determine whether o
lower bound is optimal. If so, making a uniform decision and halting require the sam
number of rounds, except whenf = t − 1, in which case the (uniform) decision can
taken one round earlier.

4.2. A lower bound for early stopping consensus

As noticed in Section 3, a lower bound for deciding is also a lower bound for stop
while a lower bound for consensus is also a lower bound for uniform consensus. H
the two lower bounds in Theorems 3.1 and 4.1 area priori incomparable. However, we a
going to prove that the problem of deciding in uniform consensus is indeed reduci
the one of stopping in consensus.2

For that, consider a consensus algorithmA in which each correct process eventua
reaches a halting state;A can be transformed into an algorithmB = T (A) which is
identical toA, except that each process postpones itsdecision until it halts (the decisio
value inB is thus the same as inA).

Proposition 4.4. The algorithmB = T (A) solves the uniform consensus problem.

Proof. By definition ofB = T (A), any runρ of B derives from the runσ of A identical
to ρ except that a process makes a decision inρ at the time it stops inσ . Clearly, the
validity and termination conditions are carried over fromσ to ρ. For uniform agreemen
suppose that processesp andq decidev andv′ at roundsr andr ′ in run ρ, respectively.
This means that inσ , p andq also decidev andv′ and halt at roundsr andr ′. It may be
the case thatp (or q) crashes in runσ ; then the failure occurs only after roundr (or r ′),
and so has no impact. Consequently, there is a runσ ′ of A in whichp andq are correct and
decidev andv′, respectively. Sinceσ ′ satisfies agreement, we havev = v′ as needed. �

Early deciding uniform consensus is therefore reducible to early stopping cons
Since the reduction takes no additional round, we obtain the following corollary:

Corollary 4.5. A lower bound for early deciding uniform consensus also holds for e
stopping consensus.

2 This result has been inspired by a suggestion of one reviewer of the first version of this paper.
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This corollary combined with Theorem 4.1 provides a lower bound for early stop
consensus similar to the one of Theorem 3.1 except the casef = t − 1 for which the lower
bound given by Dolev, Reischuk, and Strong is better.

4.3. A general lower bound for early deciding

Interestingly, the proof of Theorem 4.1 only uses the weaker version of va
condition introduced by Lamport [21], which is:

Weak validity: If all processes are correct and start with the same initial valuev, thenv is
the only possible decision value.

Consequently, the lower bound in Theorem 4.1 still holds forweak uniform consensus(the
problem defined by the termination, weak validity, and uniform agreement condit
and so fornon-blocking atomic commitmentsince the specification of this latter problem
stronger than the one of weak uniform consensus, as noticed by Hadzilacos [18]. Ho
the lower bound in Theorem 4.1 and the worst case lower boundt + 1 as well, do not hold
anymore when considering the very weak validity condition in [14] that only stipu
that there are at least two possible decision values. Indeed, Dwork and Moses [12] devis
a two rounds synchronous algorithm, which solves this very weak agreement pro
Coming back to the proof of Theorem 4.1, we observe that this is due to Lemma 4.2
is no more true for this latter agreement problem.

5. An early deciding algorithm for uniform consensus

In this section, we show that the lower bound in Theorem 4.1 is tight. For tha
might think just to apply the reduction in Section 4.2 to the optimal algorithm desc
in [9] that achieves the lower bound in Theorem 3.1. Unfortunately, this algorithm, w
is very robust in the sense that it tolerates byzantine failures, is proved to work
whenn > max(4t,2t2 − 2t + 2). Moreover, by this reduction-based method, the resul
algorithms for early deciding uniform consensus do not achieve our lower bound
casef = t − 1, which indicates this is the more difficult case to handle.

We start by considering the particular caset = 1. If t � 2, then we prove that for anyf ,
0 � f � t , there exists an algorithm for uniform consensus that achieves the lower b
in Theorem 4.1. Finally, we show that all the algorithms for the different values off can
be combined to yield a single algorithm that achieves our lower bound alone.

5.1. An optimal 1-resilient algorithm

In the caset = 1, Charron-Bost et al. [6] describe a two rounds uniform conse
algorithm tolerating one crash failure in which processes decide at the end of the first
in a failure free run. This algorithm, calledTwoCoord, is based on the following idea
the first round is coordinated by processp1 which broadcasts its initial valuev1. Upon
receivingv1, any processpi decidesv1 at the end of round 1 and reports its decision
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round 2. Ifp2 has received no message fromp1 in the first round (becausep1 has crashed)
p2 coordinates round 2 and broadcasts its initial valuev2. Since at most one failure ma
occur, every correct process has receivedv1 or v2, or both by the end of the second roun
The decision valuev1 prevails, that is if a process receivesv1, then it decidesv1; otherwise
it decidesv2.

The correctness ofTwoCoordrelies on the fact that ifp1 succeeds in sendingv1 in the
first round to some processp, p �= p1, and if t = 1, thenp or p1 is correct, and sov1 can
be definitely delivered to all processes by the end of the second round. Thef + 1 lower
bound established for early deciding consensus in the caset = 1 is thereby tight.

5.2. The EDAUC and Treet algorithms

We now suppose thatt � 2. TheEDAC algorithm presented in Section 3.3 does
solve the uniform consensus problem. To see that, consider a run ofEDAC in which all
processes are correct, exceptpi andpj , and all the initial values equal 1, exceptpj ’s initial
value that is equal to 0. Supposepj crashes at the first round and succeeds in send
message only topi , whereaspi crashes at the very beginning of round 2. Processpi cannot
detectpj ’s crash, and so decides on 0 at the end of the first round just before crashin
other processes make a decision at round 3; since they never receivepj ’s initial value,
they decide on 1. Note that this is the same reason whypi cannot stop just after makin
a decision without risking the violation of the agreement property. This again poin
that the questions of early stopping consensus and early deciding uniform consen
closely related.

However, it is easy to design a variant that solves uniform consensus. For that, we ad
theEDACalgorithm by postponing decision after broadcasting the decision value to
the next round. This variant, calledEDAUC, clearly achieves thef + 2 lower bound of
Theorem 4.1 for everyf , 0� f � t − 2.

The casef = t −1 is more tricky. To handle this case, we introduce a uniform conse
algorithmTreet in t + 1 rounds, that toleratest crash failures and such that processes h
all decided by the end of roundt if there are less thant faulty processes. This proves th
for anyf , 0� f � t , the lower bound in Theorem 4.1 is tight.

The Treet algorithm is actually a generalization for an arbitrary value oft of the
TwoCoordalgorithm. It is based on the following idea: Processesp1, . . . , pt+1 broadcas
their initial values during the first round. Processpj decidesv1 (p1’s initial value) if it
knows thatp1 has succeeded in sendingv1 to all the processes in the first round. In gene
pj decidesvi (pi ’s initial value) if pj can decide neitherv1 nor v2, . . . , norvi−1, andpj

knows thatpi has sent its initial value to all the processes in the first round. Since at
t processes may crash, each process eventually decides some value of{v1, . . . , vt+1}. If
processpj receives a message frompi in the second round,pj can safely deduce thatpi

has not crashed during the first round and thuspi has sent a message to all the proces
in the first round. If that is not the case, how canpj know whetherpi has succeeded i
sending a message to all the processes in the first round? We claim thatpj needs onlyt
rounds to determine whetherpi has failed or not in sending messages at the first roun
a run in which at mostt − 1 processes crash. For this purpose, we use a strategy kno
exponential information gathering(EIG, for short) introduced in [2]. The basic structu
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used byEIG algorithms is a labelled tree, whose paths from the root represents cha
processes along which some values are propagated.

In the Treet algorithm, each process maintainst EIG trees that are denoted b
T 1, . . . , T t . Each treeT i has t + 1 levels, ranging from 0 (the root) to the levelt (the
leaves). Each node at levelk, 0 � k � t − 1, has exactlyn − k − 1 children. Each nod
in T i is labelled by a string of process indices as follows: the root is labelled by the e
string λ, and each node with labeli1 · · · ik hasn − k − 1 children with labelsi1 · · · ik l

wherel ranges over all the elements of{1, . . . , n} \ {i1, . . . , ik, i}. In other words, all the
chains ofT i consist of distinct processes that are all different topi . In the course of the
computation, the processes decorate the nodes of their trees with values in{0,1,null}.
Nodes at levelk are decorated during the roundk + 1. Processpj decorates the root ofT i

by 1 or 0 depending on whether a message frompi has arrived or not atpj during the first
round. The node labelled byi1 · · · ik in T i is decorated bypj with 1 if pik has toldpj at
roundk + 1 thatpik−1 has toldpik at roundk that . . .pi1 has toldpi2 at round 2 thatpi1

has received a message frompi at round 1. On the other hand,i1 · · · ik in T i is decorated
by pj with 0 means thatpik has toldpj at roundk + 1 thatpik−1 has toldpik at roundk

that . . .pi1 has toldpi2 at round 2 thatpi1 has not received a message frompi at round 1.
Moreover, if the node labelled byi1 · · · ik in T i is decorated bynull, then it means that th
chain of communicationpi1, . . . , pik ,pj has been broken by a crash failure.

At round t , if processpj detects less thant crashes (i.e.,pj receives at leastn − t + 1
messages), thenpj makes a decision; otherwise,pj decides at roundt + 1. Unlesspj

learns that some process has already decided some valuev (in which casepj decides onv),
pj decides on the initial valuevi of pi if pj knows that at the first round, (1)p1, . . . , pi−1

have crashed and (2)pi has succeeded in sendingvi to all processes. Conditions (1) a
(2) are characterized by the fact that 0 occurs in all the treesT 1, . . . , T i−1, and 0 does no
occur inT i .

The formal definition of theTreet algorithm is given in Fig. 2. In this algorithm
for any indexi ∈ {1, . . . , t} and for every stringx that occurs as a label ofT i , each
process has a variableval(x)i ; the set of values that decorateT i is denoted byVal(T i).
If X = {val(x)i: |x| = k − 1, i /∈ x, 1 � i � t} arrives from pj at round k then
update(T 1, . . . , T t ,X) denotes the multiple assignment:

val(xj)i := val(x)i, 1� i � t, |x| = k − 1, i /∈ x, j /∈ x, andi �= j.

On the other hand, if no message arrives frompj at roundk, thenupdate(T 1, . . . , T t ,null∗)
denotes the multiple assignment:

val(xj)i := null, 1� i � t, |x| = k − 1, i /∈ x, j /∈ x, andi �= j.

In the sequel, we use the subscriptj to denote the instance of a state compon
belonging to processpj .

To prove thatTreet solves uniform consensus, we first give two lemmas that re
the values of the variousT i . The first lemma describes the relationships betweenvals at
different processes at adjacent levels in the treesT k .
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statesi
rounds∈ N , initially 0; T 1, . . . , T t , whose all values are equal tounknown
w1, . . . ,wt+1 ∈ V ∪ {unknown}, initially unknown; v ∈ V , initially pi ’s initial value
decision∈ V ∪ {unknown}, initially unknown; done∈ {true, false}, initially false

msgsi
case

round= 0:
if 1 � i � t + 1 then sendv to all processes
else sendnull to all processes

round= 1, . . . , t − 1:
send{val(x)j : |x| = rounds− 1, j /∈ x, 1� j � t} to all processes

round= t :
if ¬donethen send{val(x)j : |x| = t − 1, j /∈ x, 1� j � t} to all processes
else send(D,decision) to all processes

transi
rounds:= rounds+ 1
let Xj be the message frompj , for eachpj from which a message arrives
case

rounds= 1:
for all j ∈ {1, . . . , t + 1} do

if a message has arrived frompj then
wj := Xj

if j �= t + 1 thenval(λ)j := 1
else ifj �= t + 1 thenval(λ)j := 0

rounds= 2, . . . , t :
for all j ∈ {1, . . . , n} do

if a message has arrived frompj thenupdate(T 1, . . . , T t ,Xj )

elseupdate(T 1, . . . , T t ,null∗)

if rounds= t then
if at leastn + 1− t messages have arrived then

done:= true
if 0 /∈ Val(T 1) thendecision:= w1

else if 0/∈ Val(T 2) thendecision:= w2

else
. . .

if 0 /∈ Val(T t−1) thendecision:= wt−1

elsedecision:= wt

rounds= t + 1:
if ¬donethen

if some messageXj is equal to(D,decisionj ) thendecision:= decisionj
else if 0/∈ Val(T 1) thendecision:= w1

else if 0/∈ Val(T 2) thendecision:= w2

else
. . .

if 0 /∈ Val(T t ) thendecision:= wt

elsedecision:= wt+1

Fig. 2. TheTreet algorithm.
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Lemma 5.1. After t rounds of the Treet algorithm, for any node labely of T k such that
val(y)ki �= null and for any prefixxj of y, x is a node label ofT k such that val(x)kj =
val(y)ki . In particular, val(x)kj = val(xj)ki .

Proof. Obvious from the definition of theupdateprocedure. �
The second lemma describes when 0 occurs in some treeT k .

Lemma 5.2. If 0 occurs in the set Val(T k) at any process, thenpk crashes in round1.

Proof. Suppose 0∈ Val(T k)i , i.e., there exists a node labelx of T k such thatval(x)i = 0.
We claim that there is some process indexj such thatval(λ)kj = 0: if x = λ thenj = i.

Otherwisex = i1 · · · il and Lemma 5.1 implies thatval(λ)ki1
= 0. In this case, we hav

j = i1.
From the algorithm,val(λ)kj = 0 if pk fails in sending its initial value topj and thus

crashes during the first round.�
The following lemma describes the set of possible decision values.

Lemma 5.3. The decision value of any process is the initial value of some proce
{p1,p2, . . . , pt+1}.

Proof. Suppose any processpi decidesv in round r. From the algorithm,r = t or
r = t + 1.

(1) r = t . From the code ofTreet , it follows thatpi receives at leastn + 1− t messages
in roundt and there exists an indexj ∈ {1, . . . , t} such thatpi decides the current value o
thepi ’s variable denotedwj

i (cf. Fig. 2).

(a) If 1 � j � t − 1 then, from the algorithm, we have 0/∈ Val(T j )i . In particular,
val(λ)

j
i = 1 andw

j
i is assigned tovj (pj ’s initial value) in the first round. This show

thatv = vj .
(b) If j = t then 0∈ Val(T 1) ∩ · · · ∩ Val(T t−1). Lemma 5.2 shows thatp1, . . . , pt−1 have

crashed in the first round. Sincepi has received at leastn+ 1− t messages in roundt ,
a message has arrived frompt in this round and thuspt may not have crashed durin
the first round. Therefore,pi has receivedpt ’s initial valuevt at round 1, and thenpi

has setwt
i to vt at the end of the first round.

(2) If r = t + 1 there are two cases to consider:

(a) Processpi decidesv = decisionj by receiving a message(D,decisionj ). From the
algorithm, it is clear thatpj has decided at roundt . From the above case, it follow
thatpj ’s decision value is in{v1, . . . , vt }. Thereforev also belongs to{v1, . . . , vt }.

(b) Processpi receives no(D,decisionj ) message in roundt + 1. In this case,pi decides

somewj with j ∈ {1, . . . , t + 1}. There are two cases to consider:
i
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(i) 1 � j � t . From the algorithm, we have 0/∈ Val(T j ). In particular,val(λ)
j
i = 1

andw
j

i is set tovj . Thus,pi decidesv = vj .
(ii) j = t + 1. In this case, 0∈ Val(T 1) ∩ · · · ∩ Val(T t ). From Lemma 5.2, we deduc

that p1, . . . , pt have crashed in the first round. Since at mostt processes crash
pt+1 is correct and has sent its initial valuevt+1 to pi in the first round. Therefore
pi has set its variablewt+1

i to vt+1 at round 1, and thuspi decidesvt+1. �
The next two lemmas provide the key arguments to the uniform agreement prope

Lemma 5.4. If pi decidesv andpj decidesv′ both at roundt thenv = v′.

Proof. The proof is by contradiction. Suppose that in roundt , pi andpj decidev andv′,
respectively, andv �= v′. In this case,pi andpj receive at leastn + 1 − t messages in
roundt . From Lemma 5.3, there are two indicesk andl such thatv = vk andv′ = vl . Since
v �= v′, we havek �= l. For example, assume thatk < l. From the algorithm, 0/∈ Val(T k)i
and 0∈ Val(T k)j . Consequently, there exists some node labelx in T k such that

val(x)ki �= 0, val(x)kj = 0, and 0� |x| � t − 1.

There are two cases to consider.
(1) 0� |x| � t − 2. In this case,pj sendsval(x)kj = 0 to pi in round|x| + 2 � t and

thusval(xj)ki = 0. But 0/∈ Val(T k)i—a contradiction.
(2) |x| = t − 1, i.e., there are some process indicesi1, . . . , it−1 such thatx = i1 · · · it−1,

and so

val(i1 · · · it−1)
k
j = 0 and val(i1 · · · it−1)

k
i �= 0.

From Lemma 5.1, we have:

val(λ)ki1 = val(i1)
k
i2

= · · · = val(i1 · · · it−2)
k
it−1

= val(i1 · · · it−1)
k
j = 0.

Moreover, for any non empty prefixy of i1 · · · it−1, val(y)ki = null, otherwiseval(y)ki =
val(λ)ki1

= 0—a contradiction with the fact that 0/∈ Val(T k)i . In other words,

val(i1)
k
i = val(i1i2)

k
i = · · · = val(i1 · · · it−1)

k
i = null.

Since val(i1 · · · it−1)
k
i = null and val(i1 · · · it−1)

k
j = 0, processpit−1 crashes during

round t and does not send a message topi in this round. In the same way, from
val(i1 · · · il)ki = null andval(i1 · · · il)kil+1

= 0, we deduce thatpil crashes during roundl +1
and thus no messages frompil arrive atpi in roundsl +1, . . . , t . Moreover,pk has crashed
in the first round since it has not sent a message topi1 in this round (val(λ)ki1

= 0). Since
t � 2, pi receives no message frompk in round t . Therefore,pi receives no messag
from pk,pi1, . . . , pit−1 in round t . By definition of T k, all these processes are distin
This yields a contradiction with the fact thatpi receives at leastn + 1 − t messages in
roundt . �
Lemma 5.5. If pi decidesv andpj decidesv′ both at roundt + 1 thenv = v′.
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Proof. The proof is similar to the proof of Lemma 5.4.�
Theorem 5.6. For anyt � 2, the Treet algorithm toleratest crashes and solves the unifor
consensus problem withint + 1 rounds. Moreover, all correct processes make a decis
by the end of roundt in all the runs with less thant faulty processes.

Proof. Termination is obvious, since for any correct processpi that has not yet decided
the end of roundt , donei remains set tofalseup to roundt + 1, and sopi makes a decision
at the end of roundt + 1. Moreover, in a run with less thant failures, any process that
still alive at the end of roundt receives messages from at leastn + 1− t processes at eac
round, and so makes a decision at roundt .

Validity follows from Lemma 5.3.
For uniform agreement, letpi andpj be any two processes that decidev andv′ at round

r andr ′, respectively. From the algorithm,r andr ′ are equal tot or t + 1. There are two
cases to consider.

(1) r = r ′. Then Lemmas 5.4 and 5.5 imply thatv = v′.
(2) r �= r ′. For example, assumer = t andr ′ = t + 1. We consider two cases:

(a) Processpi is still alive when sending messages in roundt +1. In this case,pj receives
(D,v) from pi and thuspj decidesv′ = v.

(b) Processpi does not send a message topj (because it crashes) in roundt + 1. Since
pj does not decide in roundt , pj receives messages from at mostn − t processes in
this round. Processpi is among thesen − t processes since it is still alive until th
end of roundt . Therefore, at leastt + 1 processes have crashed in roundt + 1—a
contradiction. Thus, case (b) cannot occur.

This proves thatpi and pj , whether correct or faulty, make the same decision in
possible case. �
5.3. A single algorithm

For eachf , 0 � f � t , we have thus exhibited a uniform consensus algorithm
achieves the corresponding lower bound of Theorem 4.1. We strengthen the re
showing that theEDAUCandTreet algorithms can be stitched together in a non-mutu
destructive way so that the resulting algorithm alone achieves the lower bound for all t
values off .3

TheEDAUCandTreet algorithms are combined in the following way: each process
EDAUCandTreet in parallel. During thet − 1 first rounds, a process decides accordin
EDAUC, that is if EDAUC allows it to decide. Otherwise, at roundst or t + 1, a process
decides according toTreet unless it receives a(D,v) message from theEDAUCalgorithm,

3 Since this paper was first written, the first author and Fabrice Le Fessant have devised a mor
and general “single algorithm” which also solves other agreement problems including non-blocking atom
commitment [5].



B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15–37 35

rates

isfied

at

ss

s

s and
s that,

harder
ilures,
as the
ssion

lves
us. In
lexities
formity
em.
in which case it decidesv (in other words, anEDAUC decision prevails over aTreet
decision). We denote the so-built algorithm byOptEDAUC.

Theorem 5.7. The OptEDAUC algorithm solves the uniform consensus problem, tole
t crashes, and achieves the lower bounds of Theorem4.1.

Proof (sketched). Validity and termination are obvious.
For uniform agreement, the only delicate point is to prove that this condition is sat

even if the decision rules ofEDAUCandTreet are both applied in a run. Letp andp′ be
two processes that decidev andv′ at roundsr andr ′, respectively. Suppose thatp decides
according toEDAUCandp′ decides according toTreet ; hence,r ′ = t or r ′ = t + 1. There
are two cases to consider.

(1) r � t . According toEDAUC, processp sends a(D,v) message to all processes
roundr just before deciding. Processp′ is alive at the end of roundr (indeedr � r ′) and
receives the(D,v) message fromp. Since the decisions according toEDAUCprevail,p′
decides onv.

(2) r = t + 1. In this case, processp has received a(D,v) message from some proce
q at roundt that forcesp to decidev at roundt + 1.

(a) r ′ = t . Sincep′ has not yet made a decision (according toEDAUC) at roundt , p′ has
detected failures at each round 1, . . . , t −1, and so it has detected at leastt −1 failures.
From the code ofTreet , p′ observes no new failure at roundt ; consequently, it receive
a message fromq , and this message is(D,v). Processp has to decide onv.

(b) r ′ = t + 1. Processp sends a(D,v) message to all processes at roundt + 1 before
making a decision. Upon receiving this message, processp′ ought to decide onv.

In each case, we havev = v′ as needed. �

6. Discussion

The paper has performed an analysis of time complexities for both consensu
uniform consensus in synchronous systems with crash failures. Our analysis show
as for both the byzantine and the omission failure models, uniform consensus is
than consensus for the crash failure model. It is interesting to note that with crash fa
the difference between these two problems lies in their time complexities, where
discrepancy is already noticeable in terms of their solvabilities with byzantine or omi
failures.

A result of [7] shows that any algorithm solving a problem specification also so
the uniform version of the specification in most systems that are not synchrono
particular, this implies that consensus and uniform consensus have the same comp
in such systems. Therefore, our result also shows that when they are achievable, uni
requirements may force additional costs which depend on the synchrony of the syst
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