Available online at www.sciencedirect.com

S(:IENCE@DIHECTs Journal of
Algorithms

ELSEVIER Journal of Algorithms 51 (2004) 15-37 —_
www.elsevier.com/locate/jalgor

Uniform consensus is harder than consensus

Bernadette Charron-Bost and André Schiper

L aboratoire d’Informatique LIX, Ecole Pglechnique, 91128 Palaiseau cedex, France
b Faculté Informatique et Communications, Ecole Retjnique Fédérale, CH-1015 Lausanne, Switzerland

Received 15 June 2001

Abstract

We compare the consensus and uniform consensus problems in synchronous systems. In contrast to
consensus, uniform consensus is not solvable with byzantine failures. This still holds for the omission
failure model if a majority of processes may be faulty. For the crash failure model, both consensus and
uniform consensus are solvable, no matter how many processes are faulty. In this failure model, we
examine the number of rounds required to reach a decision in the consensus and uniform consensus
algorithms. We show that if uniform agreement is required, one additional round is needed to decide,
and so uniform consensus is also harder than consensus for crash failures. This is based on a new
lower bound result for the synchronous model that we state for the uniform consensus problem.
Finally, an algorithm is presented that achieves this lower bound.

0 2003 Elsevier Inc. All rights reserved.

Keywords:Distributed algorithm; Synchronous model;iltges; Consensus; Uniform consensus; Time
complexity; Early deciding algorithms

1. Introduction

The problem of reaching agreement in a digited system in the presence of failures
is a fundamental problem of both practical and theoretical importance. One version of
this problem, callecconsensusconsiders that each process starts with an initial value
drawn from some domail and all non faulty processes must decide on the same value.
Moreover, if the initial values are the same, sayhen the only possible decision value for
a non faulty process is. Processors in the system are liable to fail by halting prematurely

* Corresponding author.
E-mail addresscharron@lix.polytechnique.fr (B. Charron-Bost).

0196-6774/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2003.11.001

16 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

(crash failure$, by omitting to send or receivmessages when they shouloh{ission
failures), or by exhibiting arbitrary behaviorgyzantine failurels

For many applications, the agreement condition of consensus, namely “no two non
faulty processes decide diffamtly”, is inadequate as it doest restrict the decision values
of faulty processes: a faulty process is allowed to decide differently from non faulty
processes even if it fails a very long time after making a decision. Such disagreements
may be undesirable since faulty processes neagh inconsistent states and subsequently
contaminate the whole system [16]. This is why in the atomic commitment of a distributed
database [3] where inconsistent decisions lead the database itself to become inconsistent—
which is clearly unacceptable—, one consgastrengthening of the agreement condition,
called theuniform agreementondition, which precludes any disagreement even due to
faulty processes. More formally, the uniform agreement condition specifies that no two
processes (whether faulty or not) decide differently [18,19]. The problem that results from
substituting uniform agreement for agreement in the consensus specification is called the
uniform consensusroblem.

Consensus originated from a problem in real-time process control (cf. [30,32]). In this
context, process decisions are used to trigger some specific actions which must be carried
out within strict deadlines. The decisions of faulty processes are ignored in the hope that
enough non faulty processes will give their common decisions, so that using their decisions
alone, the action will be correctly carried out. The agreement condition is therefore strong
enough for such distributed applications, in which the processes that have already decided
cannot initiate irreversible actions on thewo. This explains why agreement and uniform
agreement are relevant safety conditiacording to the type of applications.

No matter what the synchrony of the system is, the uniform agreement condition
is trivially not achievable if processes may commit byzantine failures since this failure
model imposes no limitation on the possible behaviors, and consequently on the possible
decisions of faulty processes. On the other hand, in a synchronous systenpnétesses,
consensus is solvable in the presence tfyzantine failures ifz > 3¢ [25,30]. Dwork
et al. [11] showed that non-uniform agreerhean be reached for crash, omission, and
byzantine failures, for the very realistic partially synchrony models, in which bounds on
relative process speeds and on message transmission times exist but are not known or/and
hold only after some unknown time. For uniform consensus, things are quite different:
since a slow process cannot be distinguished from a crashed one in a non-synchronous
system, ensuring agreement with slow processes implies to ensure agreement with the
crashed processes. In other words, any algorithm that solves consensus also solves uniform
consensus for the crash failure model. Guerraoui [17] used this argument to show that in
many partially synchronous systems defined in terms of unreliable failure detectors [4],
any algorithm that solves consensus also solves uniform consensus; the argument actually
applies to any partially synchronous modefided in [11]. In non-synchronous systems
(i.e., both asynchronous and partially synchronous systems) with crash failures, there
is thereby no harm to concentrate on corsseninstead of uniform consensus. On the
other hand, some algorithms that solve consensus in synchronous systems may violate
the uniform agreement condition.

So it is interesting to investigate thefférences between consensus and uniform
consensus in the context of synchronous systems, and the differences in requirements

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 17

for their solutions depending on the failure model. For byzantine and omission failures,
these differences follow from classical results: in the byzantine failure model, consensus is
solvable if less than one third of processes are faulty [30]. As mentioned above, uniform
consensus is trivially not solvable in systems with byzantine failures no matter how many
processes are faulty, and so is harder than consensus. In the omission failure model,
the comparison between the two problems is far less immediate. Perry and Toueg [31]
exhibited consensus algorithms that tolerate any number of faulty processes. For uniform
consensus, we can use the translation giveif29], which transforms any algorithm
tolerant of crash failures into one tolerant of omission failures. The translation works
only if a minority of processes may fail. As long as this assumption holds, any algorithm
that solves uniform consensus in the crash failure model is converted by means of this
translation into an algorithm that solves uniform consensus and tolerates omission failures.
In systems where half or more processes may fail, Neiger and Toueg [29] showed that
uniform consensus cannot be solved with omission failures. As for the byzantine failure
model, uniform consensus is therefore harder than consensus for the omission failure
model, because its solvability requires moestrictive conditions than consensus.

Our results in this paper concern the crash failure model. Both consensus and uniform
consensus are solvable in this model, no matter how many processes are faulty. We show
that uniform consensus is still harder than consensus by considering the time complexities
of these two problems. For that, we use the well-known synchronized round model of
computation, which can be emulated in any synchronous system. In the presence of up
to ¢ crash failures, uniform consensus as well as consensus can be solvedrwithin
rounds. Moreover, Merritt [27] showed that 1 is a lower bound on the number of rounds
required for deciding in the worst case for both of these problems (see Chapter 6 in [26]
and Section 3nfra for more detailed references conery this result). Following [9],
we refine this analysis by discriminagimuns according to the number of failurgsthat
actually occur. We prove that uniform consensus requires at feas® rounds whereas
consensus requires only + 1 rounds if f is less tharr — 1, and both consensus and
uniform consensus only requige+ 1 roundsiff =¢ — 1 or f =¢.

As a matter of fact, our proof of the lower bound for early deciding in uniform
consensus still works when considering a werakersion of uniform consensus introduced
by Lamport in [21], which we caliveak uniform consensushis latter problem is similar
to uniform consensus, except that it require® be the only possible decision value only
if all the initial values are equal toandthere is no failure. Our lower bound thereby holds
for the weak uniform consensus problem, and so for any stronger problem. In particular, it
holds for the well-knowmon-blocking atomic commitmeptoblem in database systems.

Merritt’s result [27] is actually stronger than the one described above since Merritt
established the+ 1 lower bound for the restricted failure model @irtlerly crash failure$
in which faulty processes must respect the order specified by the protocol in sending
messages to neighbors. Therefore, the lower bound for early deciding consensus that we
deduce from Merritt's lower bound also holdsr forderly crash failures. On the other
hand, our proof of the lower bound for early deciding uniform consensus works only
for (unordered) crash failures, and we do not know whether this result still holds for the
restricted class of orderly crash failures.

18 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

We also present consensus and uniform consensus algorithms that achieve our lower
bounds for early deciding. In such early deciding algorithms for consensus, processes
decide one round earlier than in any uniform consensus algorithm for most cases (0
f <t — 2). By refining time complexity analysis as in [9], we thus show that uniform
consensus is harder than consensus for the crash failure model.

The lower bound presented here is very close to the one established by Dolev, Reischuk,
and Strong [9]: they prove thabnsensusequires at least miy + 2, r + 1) rounds before
all correct processes cdnalt, i.e., cease executing the algorithm. As already pointed out
in [9], itis important to notice the difference between the time at which a process can decide
and the time at which it can halt. From the worst case lower bound, we prove that consensus
requiresf + 1 rounds to decide; hence by the lower bound in [9], correct processes cannot
stop just after making a decision, in an early deciding algorithm. In turn, our lower bound
result implies that, in any early stopping algorithm, processes must postpone deciding to
the very end of the computation in order to guarantee agreement uniformity.

Obviously, a lower bound for deciding is also a lower bound for stopping. On the other
hand, a lower bound for consensus also holds for its (stronger) uniform version, namely
uniform consensus. Consequently, the lower bound results presented in [9] and here are
incomparable priori. However, a simple reduction argument (cf. Section 4.2) shows that
any lower bound for early deciding uniform consensus is also a lower bound for early
stopping consensus. We can thus deduce the lower bound in [9] from ours, except in the
casef = — 1 for which Dolev, Reischuk and Strong establish a better result. As our lower
bound is actually optimal and because of this particular gaser — 1, there cannot be a
simple converse reduction which would allow us to deduce our lower bound from the one
in [9].

From a technical viewpoint, our lower bound proof is inspired by the one by Dolev,
Reischuk, and Strong, and also proceeds by a double induction. Afterwards, an alternative
proof has been given by Keidar and Rajsbaum [20], which uses a single induction but relies
on the formalism ofayeringdeveloped by Moses and Rajsbaum [28]. Note that for failure
free runs, Lamport [22] also gives the two rounds lower bound, and in [23] he refines the
analysis by attaching specific rolesgach process (proposer, acceptor, learner).

The paper is organized as follows. SectioroRtains the basic definitions and the formal
description of the synchronized round model of computation. Section 3 gives the number
of rounds required for deciding in runs of a consensus algorithm with at ghasash
failures. We investigate the same question for the uniform consensus problem in Section 4,
and in Section 5, we prove that these lower bounds are achievable. Section 6 provides some
concluding remarks.

2. Themode€

We consider synchronous distributed systems consisting of a sepaicesses] =
{p1,..., pn}- Processes communicate by exchanging messages. Communications are point
to point. Every pair of processes is connected by a reliable channel. In such systems, one
can emulate a computational model caltgahchronous modéh which computations are
organized in rounds of information exchange. On each process, a round consists of message

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 19

sending, message receipt, and local proogsdiVe now recall the formal description of
the synchronous model (see Chapter 2 in [28fdetailed presentation): each procgss
has a buffer denoteduffer; that represents the set of messages that have been gent to
but that are not yet received. An algorithm consists for each procegs € IT of the
following components: a set of states denotedstates, an initial statenit;, a message-
generation functiomsgs mappingstates x I7 to a unique (possiblyull) message, and

a state transition functiomans mappingstates and vectors (indexed bif) of messages
to states. In any execution ofd, each procesg;, in lock-step, repeatedly performs the
following two steps:

(1) Apply msgs to the current state to generate the messages to be sent to each process.
Put these messages in the appropriate buffers.

(2) Applytrans to the current state and the messages presédniffar, to obtain the new
state. Remove all messages frouffer;.

The combination of these two steps is callecband of A. Note that in this model, an
algorithm specifies theetof messages processes have to send in each round, but not the
order in which messages are sent.

We distinguish some of the process statehalting statesthey are those from which
no further activity can occur. When reaching a halting state of algorithmprocess stops
participating toA. That is, from a halting state no messages are sent and the only state
transition is a self-loop.

A run of A is an infinite sequence of's rounds. Apartial run of A is a finite prefix of
arunofA.

2.1. Failures

Processes can fail by crashing, that is by stopping in the middle of their executions.
A process may crash before or during some instance of the steps described above.
A process may thus succeed in sending only a subset of the messages specified to be
sent. This can banysubset since in this model, a process does not produce its messages
sequentially. After crashing at a round, a process does not send any message in any of the
subsequent rounds.

A process is said to beorrectin a run if it does not crash; otherwise it is said to be
faulty. The set of all the runs of an algorithrh in which at mostr processes crash is
denoted byRunA, 1).

2.2. Consensus and uniform consensus
In the consensus problem, each process starts with an input value from a fixed
value setV and must reach an irrevocable decision on one valu®.of he consensus

specification is defined as the set of all the runs that satisfy the following conditions:

Validity: If all processes start with the same initial valuehenv is the only possible
decision value.

20 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

Agreement No two correct processes decide on different values.
Termination All correct processes eventually decide.

As explained in Section 1, this specificatiallows processes to decide differently if one
of them fails. To avoid such disagreements, the agreement property can be strengthened to

Uniform agreementNo two processes (whether correct or faulty) decide on different
values.

The specification that reka from replacing agreement/tuniform agreement in the
consensus specification is calleciform consensu$Ve say that an algorithm tolerates
crashes and solve@niform) consensud# all the runs inRun(A, r) satisfy the validity,
termination, and (uniform) agreement conditions.

3. Lower boundsfor consensus

In this section, we concentrate on the camsus problem and we first recall some well-
known lower bound results, namely the lower bound in the worst case [27] and the one
for early stopping [9]. We then recall a standahsensus algorithm, originally described
in [24], in which all processes that ever decide have decided by the end of yountl
in all the runs with at mosf crash failures. Finally, from the worst case lower bound, we
easily deduce that + 1 is indeed a lower bound for deciding in consensus algorithms.

3.1. Lower bound in the worst case

A fundamental result about consensus in synchronous systems isihatif- 2, then
any consensus algorithm that toleratdailures must runr + 1 rounds in some execution
before all processes that ever decide have decided. This lower bound has been originally
established for consensus in the case dfdnyine failures by Fischer and Lynch [13].
The result was extended first to the case of byzantine failures with authentication by
Dolev and Strong [10] and by DeMillo, Lynch, and Merritt [8], and then to crash failures
by Merritt [27].1 Alternative proofs of this worst case lower bound based on bivalency
arguments have been then given by Aguilera and Toueg [1], Gafni [15], and Moses and
Rajsbaum [28]. Clearly, this worst case lower bound also holds for the stronger problem
of uniform consensus. Moreover, it is well-known that there are algorithms for uniform
consensus (and so for consensus) toleraticrgsh failures, and in which processes decide
in ¢ + 1 rounds. The lower bound of+ 1 rounds is thereby tight for both consensus and

1 The lower bounds in [10,27] have been actually established fdnthentine agreemeptoblem (also called
terminating reliable broadcajtbut can be easily adapted to the consensus problem. As mentioned in Section 1,
Merritt [27] proved ther + 1 lower bound for the restricted class adrtierly crash failure$ in which faulty
processes must respect the order specified by the protocol in sending messages to neighbors. Merritt's lower
bounda fortiori holds for our model of (unordered) crash failures.

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 21

uniform consensus. With respect to the worst case time complexity, consensus and uniform
consensus are therefore two equivalent problems.

3.2. Lower bound for early stopping

Following [9], we refine the analysis bydtiriminating runs according to the number
of failures thatactually occur: we consider the number of rounds required to decide not
over all the runs of an algorithm that toleratesrash failures, but over all the runs of
the algorithm in which at mosf processes crash for anfy, 0 < f < t. For consensus
algorithms, Dolev, Reischuk, and Strong [9] give a lower bound on the number of rounds
required for processds haltin the runs with at mosy faulty processes. More precisely,
they prove the following theorem:

Theorem 3.1 (Dolev et al., 1990)Let A be a consensus algorithm that toleratgsrocess
crashes. Ifn > r + 2 then for eachf, 0 < f <t, there exists a run ofA with at mostf

crash failures such that some process has not halted before mim@d-+ 1, f + 2) in that
run.

As pointed out by Dolev, Reischuk, and Strong in [9], it is important to notice that a
process may decide at some round without réagh halting state, namely, it may continue
to send messages and to participate to thresensus algorithm in subsequent rounds. In
other words, there may be a difference between the time at which a process decides and the
time at which it halts. Indeed, Theorem 3.1 gives the number of rounds until the processes
all stop but says nothing about the time when processes decide. Note that obviously, a lower
bound on deciding is also awer bound on halting, but netce-versa

In this paper and contrary to [9], we consider the time at which processes decide and
not the time at which they halt. This is motivated by the following reasons. Firstly, from a
practical viewpoint, the time at which deasis are taken is a significant time measure: it
is indeed quite important to determine the time when decisions are available in the system.
Secondly, since the+ 1 worst case lower bound result considers the decision time and not
the halting time, it seems more relevant to keep the same time complexity measure when
refining efficiency analysis of consensus and uniform consensus algorithms.

3.3. An early deciding algorithm

We now present a well-known early deciding consensus algorithm devised by Lamport
and Fischer [24] which will prove that the lower bound of Theorem 3.1 does not hold when
“early stopping” is replaced by “early deciding”.

In the algorithm which we calEDAC, each procesg; maintains a variabléailed
containing the set of processes thpatdetects to have crashed. Procgsdearns thatp;
crashes during a round jf; receives no message from at this round. At the end of every
round, each process; updates its variabl&ailed. If Failed remains unchanged during
roundr, that is if p; detects no new crash failure, andyf has not yet decided, then
p; decides at the end of round Any process that decides anat roundr broadcasts a
(D, v) message at round+ 1 to inform the other processes of its decision and to force the

22 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

states;
roundse N, initially 0
W C V, initially the singleton set consisting @f's initial value
done a Boolean, initiallyfalse
halt, a Boolean, initiallyfalse
Rec Failed C 17, initially ¢
Failed C 17, initially ¢
decisione V U {unknown, initially unknown
msgs;
if =halt then
if —donethen send¥ to all processes
else send D, decision to all processes

trans;
if =halt then
rounds:= rounds+ 1
let X; be the message from;, for eachp; from which a message arrives
if donethenhalt :=true
if some messageD, v) arrives then
decision:=v
done:= true
elseW:=WulJ; X;
Rec Failed := Failed
Failed:= {p;: no message arrives fropy at the current round
if Rec Failed = Failed then
decision:= min(W)
done:= true

Fig. 1. TheEDAC algorithm.

processes that have not yet decided to decide ionturn. The code oEDAC s given in
Fig. 1 (in this code null messages do not appear imibgs's).

Among f + 1 rounds of a run with at mosf faulty processes, there must be some
round at which no process fails. So each progeskefinitely detects a failure free round
(maybe erroneously), and at the end of such a ropridhows all the initial values in play
at this time. The other processes cannot leasnather initial values; hence it is safe fpr
to decide at the end of the first round at which it has detected no new failure. The reader is
referred to [24] for a complete correctness prooESAC.

The EDAC algorithm proves that th¢ + 2 lower bound of Theorem 3.1 does not hold
when considering the question of early deciding instead of the one of early stopping. This
shows that there is an actual difference between the time at which a process can decide
and the time at which it can halt (this obsetiga has been already mentioned by Dolev,
Reischuk, and Strong in [9]). As exemplified by tBBAC algorithm, it is not safe for a
process to stop just after making a decision: it may be the case that some proeessives
a new information from procesg at some round in which p; detects no new failure
and this information affectg;’s decision value. Since some procgssmay receive no
message from (becausg fails) at round-, the only wayp; is certain that the information
gets atp; is thatp; itself sends it. Thus, procegs has to send this information {;, and
SO cannot stop as soon as it makes a decision.

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 23

3.4. Alower bound for early deciding

We now prove that thEDACalgorithm is optimal, i.e., at leagt+ 1 rounds are required
for deciding in some run with at mogt faulty processes. This result is a straightforward
consequence of thet 1 worst case lower bound.

Theorem 3.2. Let A be a consensus algorithm that toleratgzrocess crashes. #f > ¢ + 2
then for eachf, 0 < f <1, there exists a run ol with at mostf crashes in which at least
one process decides not earlier than during royhd- 1.

Proof. Let f be any fixed element ifD, ..., ¢}. The worst case lower bound [27] recalled
in Section 3.1 applied to the algorithm seen as a consensus algorithm tolerafirggash
failures, shows that there exists a rundfvith at mostf crashes in which some correct
process decides not earlier than during roynd 1. O

Compared with the lower bounds stated in Theorem 3.1, this result shows that for most
of the cases (& f <t — 2), it takes at least one additional round to halt after making a
decision in early deciding algorithms for consensus.

4. A lower bound for early deciding uniform consensus

We now study the question of early deciding for uniform consensus. As the uniform
consensus specification is stronger than the one of consensug,the lower bound
stated in Theorem 3.2 fortiori holds for uniform consensus. In this section, we refine
this result by proving a lower bound for uniform consensus greater fharl. Since the
t + 1 lower bound for consensus is achievable (for example, biB¥%C algorithm), this
thereby shows that the uniform consensus problem is harder than the consensus problem
in the context of synchronous model with crash failures. We then show how to deduce
the lower bound for early stopping consensus established by Dolev, Reischuk, and Strong
(Theorem 3.1) from our lower bound for early deciding uniform consensus, except in the
casef = — 1. Finally, we observe that our lower bound result also applies to other
agreement problems with a uniform agreement property, and in particular to the non-
blocking atomic commitment problem.

4.1. Alower bound for early deciding uniform consensus

Theorem 4.1. Suppose > 1 and letA be a uniform consensus algorithm that tolerates
process crashes. For eagh 0 < f <, there exists a run oA with at mostf crashes in
which at least one process decides not earlier than during rofiRd2 if f <t — 2, and
not earlier than during round 4 1 otherwise.

Here we use the same proof technique as in [9]. However, contrary to the computational
model in [9], there is here no special haltingtes, and so a process which has stopped
to send messages has necessarily crashed. This makes the proof simpler at various points,

24 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

but requires to have more processes that can be faulty in the construction of some specific
runs. This latter point has an actual impact whea ¢ — 1: in this case, our lower bound

for early deciding is smaller than the one in [9] for early stopping. All these differences
lead us to present the complete proof of Theorem 4.1 even if it is inspired by the one given
in [9].

Before proving the theorem, we first introdusome additional defitions and notation.
Let p be a run of an algorithm. For anyk < 1, we defineo[k] to be the partial run ofs
that consists of thé first rounds ofp. Theconservative extensiaof p[k] is the unique
run o’ of A such thato’[k] = p[k] and no process crashes after round\Ve say thaip
is f-regular if there are at mosy processes that crash jnand for everyk, 1 < k < f,
there are at modt processes that crash irik]. If a process crashes at rouh@nd fails to
send message, and if no process crashes after roundhenm is said to be dast unsent
message ip.

For any initial configuratiorC, there exists a unique failure free run afthat starts
from C; this run is denoted byc. On the other hand, for any procgssA admits a unique
run pg starting fromC and in which onlyp is faulty and crashes from the beginning; this
run is callecthe silencing o from C.

If p andp’ are two runs ofd, we say thap is indistinguishable fromp” with respect to
processp, denotedp ~, o', if p has the same initial state and performs the same sequence
of actions inp andp’.

Finally, if A solves the uniform consensus problem, then for anyawi A, dedp)
denotes the unique value that is decidedin

Proof of Theorem 4.1. Since our concern is a lower bound result, we can restrict our
attention to the binary uniform consensus problem, Ves {0, 1}.
First, in the case = 1, the lower bound in Theorem 4.1 is captured by Theorem 3.2,
and so is already proved.
Thus we now assume that> 2. Let A be any algorithm that solves the uniform
consensus problem and that toleratesashes. For any integégr, 0< f < ¢, consider the
set of all runs ofA in which at mostf processes crash. There are three cases to consider.
(1) f = 0. We give a straightforward proof in this case. Assume for the sake of
contradiction that in every failure free run dfall the processes decide at the first round.
Let % andC” denote the initial configurations such that all processes have initial value 0
and 1, respectively. Consider a chain of initial configuratiéRsC?, ..., C" spanningc®
to C” such that any two consecutive configurati@tis® andC? differ only in the initial
value of procesp;. Letr; denote the failure free run of starting fromc’, i.e.,r; = rei.
We now prove by induction on that the value decided in eaehis 0. By validity, all
processes must decide Orig Leti be such that X i < n, and suppose that the decision
value inr;_1 is 0. Let p be a process different tp;; consider the rum;_1 starting from
Ci~1 such that (1) all the processare correct except procesgeand p;, (2) p; succeeds
in sending only one messagejiand then crashes, and (@)xrashes just at the beginning
of the second round. Sinee> 2 andA tolerates crashesg;_1 is a run ofRunA, r), and
so satisfies the three conditions of uniform consensus. The first reund&] andr; _1[1]
are indistinguishable to procegs By inductive hypothesisy decides 0 in;_1[1], and so
in o;_1[1]. Now, we consider the run that is identical tas; _; except that; starts fromC!

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 25

(instead ofC’~1). Sincen > 3, there exists some processuch that; # p andg # p;. For
such a procesg, we haver; ~, o;_1. This implies thatleqr;) = dedo;_1) = 0. The first
roundst;[1] andr;[1] are indistinguishable tp, and sop decides 0 ir;. Sodedr;) =0,
as needed. In particuladedr,) = 0. This contradicts that the decision valuerinmust
be 1 because of the validity condition.

(2) f €{1,...,t — 2}. First, we use a bivalency argument borrowed from [14] to show
that there is an initial configuratiof from which the failure free run and the silencing
of some process lead to two different decision values (Lemma 4.2). We then proceed by
contradiction: we first show that if in all the runs afwith at mostf crashes, all processes
decide by the end of round + 1, then any last unsent message of-@egular run can
be “added” without altering the decision valfLemma 4.3). By successive application
of this intermediate result, we obtain that all tfieregular runs starting from some initial
configurationC lead to the same decision value as the failure freergurin particular,
any silencing of some process frathhas the same decision valueras contradicting the
preliminary bivalent result (Lemma 4.2).

(3) f =t — 1. The case studied above provides a run with at mes® crashes (and
so with at most — 1 crashes), in which uniform consensus is achieved not earlier than at
roundf +1=r.

(4) f =t. In this case, the lower bound immediately follows from thie 1 worst case
lower bound. O

Lemma 4.2. There is an initial configuratiorC and there is some procegssuch that
dedrc) # dedpl).

Proof. By the standard bivalency argument of [14], there are two initial configurations
andC’ which differ only by the initial value of some processand such that (Idedr¢) #
dedr¢). Clearly, for any procesg # p, we havepl ~, pfl,, and thus (2dedpf) =
dedpl,). From (1) and (2), it follows thadedr¢) # deapl) or dedr¢) # dedpl,). O

Lemma 4.3. Let f be an intege < f <t — 2. Suppose that in all the runs df with at
mostf crashes, all the processes that are still alive at the end of rofindl have decided
by the end of roundf 4+ 1. Leto be an f-regular run of A and letm be any last unsent
message of. If 7 is the run of A which is identical tao except thain is sent int, then
dedo) =dedr).

Proof. By definition ofr and sinces is f-regular,z is also anf-regular run ofA. Thus,
after f + 1 rounds, all the processes that are still alive have decided irbatidz. Note
that any process is correct iniff it is correctino.
Let p be the process that fails to semdandg be the destination of. Letk be the round
of o during whichp crashes. The cases whére f + 1 are trivial. Thus, we assume that
k < f + 1. The proof is by decreasing induction bnstarting withk = f + 1 and ending
with k = 1. It will be convenient to notéthe complementtéin f +1,i.e.,/ = f+1—k.
Basis k= f + 1. Sincen — f > n — (t — 2) > 3, there exists at least one process,
different from ¢, that is correct in bothv and r. For such a process, we have

26 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

olf + 1]~ t[f + 1]. This implies that decides the same valuednandz. Therefore,
dedo) =dedr).

Inductive stepAssumek > f. Suppose the claim is true for any last unsent message in
roundi of any f-regular run, withk + 1 <i < f + 1. Runo is f-regular, and so there are
at mostk processes that crash #fk]. Sincek + 1+ = f +2 andf + 2 < n, we can
find [processes;, ..., r; which are different frong, and which do not crash im[k]. For
convenience, we notg= ro. Leto’ be the run that is identical 1@, except that:

e Atroundk+ 1, rg succeeds in sending a message onky tand then crashes. No other
processes fail in this round.

e Atroundk+ 2,r1 succeeds in sending a message onkgtand then crashes. No other
processes fail in this round.

e Atround f +1,r;,_1 succeeds in sending a message only &nd then crashes.
e Procesg; crashes at the beginning of rourfd+ 2, just before sending any message.
No other processes fail in this round and in the later rounds.

Runo is regular, and thus there are at mbsgt/ + 1= f + 2 crash failures iw’. Since
f<t—2,0'isinRun4,r).

Let ol,...,0! denote the conservative extensions @ik + 1],...,0'[f + 1],
respectively. We can safely extend this notationstb= ¢ becausen is a last unsent
message of . Sinceo is regular, there are at mast- i crash failures i, In particular,
there are at mosf crash failures in!~1. Process; is correct ino/~1, and thus decides
by the end of round + 1 in '~1. Moreoverg’, o'~1, ands! are indistinguishable tg
up to the end of roungt + 1. This shows that processdecides the same value by the end
of round f + 1 in each of these three runs. Since the agreement property is uniform, this
implies that

deqo’ 1) = deqo’) = deqo’). (1)

On the other hand, in each ruri, 1 <i <, the message thaf_; fails to send to
any process ¢ {p,ro, r1, ..., r;} at roundk + i is a last unsent messageddf Moreover,
09,01, ..., o' Laref-regular runs. By successive application of the inductive hypothesis,
we obtain thatledo’~1) = deqo?) for any indexi such that < i < — 1. Finally, this
shows that

dedal_l) =...= dedal) = dedao). (2)

Equalities (1) and (2) imply thatedo) = dedo”).
Now from run z, we use a similar construction of regular runs: kt and

19=1,71, ..., ¢! denote the so-defined regular runsofBy a similar argument to those
used witho’, o!~1, ando’!, we show that

deq7'~t) = dedr’) = deq). ©)
By repeated applications of the inductive hypothesis, we get that

deq7'Y) =-.. =deqr!) = deqr). (4)

This implies thadeqt) = dedt’).

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 27

On the other hand, let be a process that is correct in bathandz’ (such a process
exists sincef + 2 <t < n). Runse’ andz’ are indistinguishable te, i.e.,o’ ~; /. This
implies thatdeds’) = dedt’). Sodeqo) = dedqr), as needed. O

For anyt > 1 and anyf, 0 < f <, the lower bound for early deciding uniform
consensus in Theorem 4.1 is equal to the one for early stopping consensus in Theorem 3.1,
except the cas¢ = — 1. In this case, we have only proved thabunds are necessary to
decide in a uniform consensus algorithm (as well as in consensus algorithms}y while
rounds are required before halting. Now fh&portant point is to determine whether our
lower bound is optimal. If so, making a unifo decision and halting require the same
number of rounds, except whefi=¢ — 1, in which case the (uniform) decision can be
taken one round earlier.

4.2. Alower bound for early stopping consensus

As noticed in Section 3, a lower bound for deciding is also a lower bound for stopping,
while a lower bound for consensus is also a lower bound for uniform consensus. Hence,
the two lower bounds in Theorems 3.1 and 4.1apgiori incomparable. However, we are
going to prove that the problem of deciding in uniform consensus is indeed reducible to
the one of stopping in consensts.

For that, consider a consensus algoritAnin which each correct process eventually
reaches a halting state§ can be transformed into an algorithBv= T (A) which is
identical to A, except that each process postponesl@sision until it halts (the decision
value in B is thus the same as).

Proposition 4.4. The algorithmB = T (A) solves the uniform consensus problem.

Proof. By definition of B =T (A), any runp of B derives from the ru of A identical
to p except that a process makes a decisiop iat the time it stops inr. Clearly, the
validity and termination conditions are carried over frento p. For uniform agreement,
suppose that processpsandg decidev andv’ at rounds- andr’ in run p, respectively.
This means that iar, p andg also decidev andv’ and halt at rounds andr’. It may be
the case thap (or ¢) crashes in rum; then the failure occurs only after roundor r’),
and so has no impact. Consequently, there is arfuai A in which p andg are correct and
decidev andv’, respectively. Since’ satisfies agreement, we hawe- v" as needed. O

Early deciding uniform consensus is therefore reducible to early stopping consensus.
Since the reduction takes no additional round, we obtain the following corollary:

Coroallary 4.5. A lower bound for early deciding uniform consensus also holds for early
stopping consensus.

2 This result has been inspired by a suggestion of one reviewer of the first version of this paper.

28 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

This corollary combined with Theorem 4.1 provides a lower bound for early stopping
consensus similar to the one of Theorem 3.1 except the £ase— 1 for which the lower
bound given by Dolev, Reischuk, and Strong is better.

4.3. A general lower bound for early deciding

Interestingly, the proof of Theorem 4.1 only uses the weaker version of validity
condition introduced by Lamport [21], which is:

Weak validity If all processes are correct and start with the same initial valdleenv is
the only possible decision value.

Consequently, the lower bound in Theorem 4.1 still holdsvfeak uniform consensihe
problem defined by the termination, weak validity, and uniform agreement conditions),
and so fomon-blocking atomic commitmesince the specification of this latter problem is
stronger than the one of weak uniform consensus, as noticed by Hadzilacos [18]. However,
the lower bound in Theorem 4.1 and the worst case lower boyntl as well, do not hold
anymore when considering the very weak validity condition in [14] that only stipulates
that there are at least two possible decisidnes. Indeed, Dwork and Moses [12] devised

a two rounds synchronous algorithm, which solves this very weak agreement problem.
Coming back to the proof of Theorem 4.1, we observe that this is due to Lemma 4.2 which
is no more true for this latter agreement problem.

5. An early deciding algorithm for uniform consensus

In this section, we show that the lower bound in Theorem 4.1 is tight. For that, we
might think just to apply the reduction in Section 4.2 to the optimal algorithm described
in [9] that achieves the lower bound in Theorem 3.1. Unfortunately, this algorithm, which
is very robust in the sense that it tolerates byzantine failures, is proved to work only
whenn > max(4r, 21> — 2r + 2). Moreover, by this reduction-based method, the resulting
algorithms for early deciding uniform consensus do not achieve our lower bound in the
casef =t — 1, which indicates this is the more difficult case to handle.

We start by considering the particular case 1. If ¢ > 2, then we prove that for any,

0 < f <1, there exists an algorithm for uniform consensus that achieves the lower bound
in Theorem 4.1. Finally, we show that all the algorithms for the different valugsadn
be combined to yield a single algorithm that achieves our lower bound alone.

5.1. An optimal 1-resilient algorithm

In the case = 1, Charron-Bost et al. [6] describe a two rounds uniform consensus
algorithm tolerating one crash failure in which processes decide at the end of the first round
in a failure free run. This algorithm, callétvoCoord is based on the following ideas:
the first round is coordinated by process which broadcasts its initial value,. Upon
receivingvi, any procesgp; decidesv; at the end of round 1 and reports its decision at

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 29

round 2. If p2 has received no message frgmin the first round (becaugg has crashed),
p2 coordinates round 2 and broadcasts its initial valpleSince at most one failure may
occur, every correct process has receivedr v, or both by the end of the second round.
The decision value; prevails, that is if a process receivgs then it decides1; otherwise

it decidesvy.

The correctness dfwoCoordrelies on the fact that ip1 succeeds in sending in the
first round to some procegs p # pi1, and ifr = 1, thenp or p1 is correct, and so1 can
be definitely delivered to all processes by the end of the second roundf Fhe lower
bound established for early deciding consensus in thercaskis thereby tight.

5.2. The EDAUC and Trealgorithms

We now suppose that> 2. The EDAC algorithm presented in Section 3.3 does not
solve the uniform consensus problem. To see that, consider a lEDAE in which all
processes are correct, excepandp ;, and all the initial values equal 1, excgpts initial
value that is equal to 0. Suppoge crashes at the first round and succeeds in sending a
message only tp;, whereag; crashes at the very beginning of round 2. Proggssannot
detectp;’s crash, and so decides on 0 at the end of the first round just before crashing. The
other processes make a decision at round 3; since they never regéviaitial value,
they decide on 1. Note that this is the same reason pyhgannot stop just after making
a decision without risking the violation of the agreement property. This again points out
that the questions of early stopping consensus and early deciding uniform consensus are
closely related.

However, it is easy to design a variant that&sl uniform consensus. For that, we adapt
the EDAC algorithm by postponing decision after broadcasting the decision value to all at
the next round. This variant, calld&€DAUC, clearly achieves thg + 2 lower bound of
Theorem 4.1 forevery, 0< f <t — 2.

The casef =t —1is more tricky. To handle this case, we introduce a uniform consensus
algorithmTreg in 7 4+ 1 rounds, that toleratescrash failures and such that processes have
all decided by the end of roundf there are less thanfaulty processes. This proves that
forany f, 0< f <t, the lower bound in Theorem 4.1 is tight.

The Tree algorithm is actually a generahtion for an arbitrary value of of the
TwoCoordalgorithm. It is based on the following idea: Procesges . ., p;+1 broadcast
their initial values during the first round. Process decidesvy (p1's initial value) if it
knows thatp; has succeeded in sendingto all the processes in the first round. In general,
p; decidesy; (p;’s initial value) if p; can decide neithar, norvy, ..., norv;_1, andp;
knows thatp; has sent its initial value to all the processes in the first round. Since at most
t processes may crash, each process eventually decides some value of, v, y1}. If
processp; receives a message fropa in the second round; can safely deduce thai
has not crashed during the first round and tppfias sent a message to all the processes
in the first round. If that is not the case, how canknow whetherp; has succeeded in
sending a message to all the processes in the first round? We claim;thatds only
rounds to determine whether has failed or not in sending messages at the first round of
arun in which at most — 1 processes crash. For this purpose, we use a strategy known as
exponential information gatherin@EIG, for short) introduced in [2]. The basic structure

30 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

used byEIG algorithms is a labelled tree, whose paths from the root represents chains of
processes along which some values are propagated.

In the Treg algorithm, each process maintainsElG trees that are denoted by
T, ..., T'. Each treeT’ hasr + 1 levels, ranging from 0 (the root) to the leve(the
leaves). Each node at levie] 0 < k <t — 1, has exactlys — k — 1 children. Each node
in 7' is labelled by a string of process indices as follows: the root is labelled by the empty
string A, and each node with labé]---i; hasn — k — 1 children with labels---i;!/
wherel ranges over all the elements df, ..., n}\ {i1, ..., i, i}. In other words, all the
chains of T’ consist of distinct processes that are all differenptoln the course of the
computation, the processes decorate the nodes of their trees with val{@4.inull}.
Nodes at levek are decorated during the roukd- 1. Procesgp; decorates the root gf’
by 1 or 0 depending on whether a message fggrhas arrived or not gt; during the first
round. The node labelled by - - - ix in 77 is decorated by; with 1 if p; has toldp; at
roundk + 1 thatp;,_, has toldp;, at roundk that. .. p;, has toldp;, at round 2 thap;,
has received a message frgimat round 1. On the other hand, - - i in T' is decorated
by p; with O means thap;, has toldp; at roundk + 1 thatp;, , has toldp;, at roundk
that. .. p;, has toldp;, at round 2 thap;, has not received a message frpmat round 1.
Moreover, if the node labelled by - - - iy in T is decorated byull, then it means that the
chain of communicatiop;,, ..., p;,, p; has been broken by a crash failure.

At roundt, if processp; detects less thancrashes (i.e.p; receives at least —r + 1
messages), thep; makes a decision; otherwisp; decides at round 4 1. Unlessp;
learns that some process has already decided somewé@tuehich casep; decides on),

p; decides on the initial valug of p; if p; knows that at the first round, (Pk, ..., pi-1
have crashed and (2) has succeeded in sendingto all processes. Conditions (1) and
(2) are characterized by thadt that 0 occurs in all the treg¥, ..., 7°~1, and 0 does not
occurinT?.

The formal definition of thelreg algorithm is given in Fig. 2. In this algorithm,
for any indexi € {1,...,r} and for every stringr that occurs as a label df’, each
process has a variabl@l(x)’; the set of values that decorafé is denoted byal(7").

If X ={valx)’: |x|=k—1, i ¢ x, 1<i <1t} arrives from p; at roundk then
updatg7?, ..., T?, X) denotes the multiple assignment:

val(xj) :=val(x)’, 1<i<t, |x|=k—1,i¢x, jé¢x, andi # j.

Onthe other hand, if no message arrives fropat rounck, thenupdate7?®, ..., 77, null*)
denotes the multiple assignment:

val(xj) :=null, 1<i<t, |x|=k—1,i¢x, jéx, andi # j.

In the sequel, we use the subscripto denote the instance of a state component
belonging to procesg; .

To prove thatTreg solves uniform consensus, we first give two lemmas that relate
the values of the varioug’. The first lemma describes the relationships betwedsat
different processes at adjacent levels in the tifes

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 31

states;
roundse N, initially 0; 71, ..., 7', whose all values are equalteknown
wl, ..., w'™le v U {unknown, initially unknown v € V, initially p;’s initial value

decisione V U {unknown, initially unknown donee {true, falsg, initially false

msgs;
case

round=0:
if 1 <i<t+1then send to all processes
else sendull to all processes

round=1,...,r —1:
send{val(x)/: |x| =rounds— 1, j ¢ x, 1< j <t} to all processes

round=¢:
if —donethen sendval(x)/: |x|=¢—1, j ¢ x, 1< j <t} to all processes
else send D, decision to all processes

trans;
rounds:= rounds+ 1
let X ; be the message from;, for eachp; from which a message arrives
case
rounds= 1:
forall j e{1,...,t+ 1} do
if a message has arrived fropy then
w/ =X
if j#1¢4+1thenval(r)/ =1
else if j # ¢ + 1 thenval(r)/ := 0
rounds=2,...,1:
forall j €{1,...,n} do
if a message has arrived fropy then updateT?, ... T!, X;)
elseupdateT?, ..., T!, null*)
if rounds=r then
if at leastn + 1 — r messages have arrived then
done:=true
if 0 ¢ Val(T'1) thendecision:= w?
else if O¢ Val(T'2) thendecision:= w?
else

if 0 ¢ Val(T’~1) thendecision:= w’~1
elsedecision:= w’
rounds=1t + 1:
if —donethen
if some messag# ; is equal to(D, decisiory) thendecision:= decisiory
else if 0¢ Val(T1) thendecision:= w
else if 0¢ Val(T2) thendecision:= w2
else

if 0 ¢ Val(T") thendecision:= w’
elsedecision:= w1

Fig. 2. TheTreg algorithm.

32 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

Lemma 5.1. After r rounds of the Treealgorithm, for any node labey of 7% such that
val(y); # null and for any prefixcj of y, x is a node label off* such that valx)’ =

val(y)¥. In particular, val(x)’; = val(xj)~.
Proof. Obvious from the definition of thepdateprocedure. O
The second lemma describes when 0 occurs in som&free
Lemma5.2. If 0 occurs in the set Var®) at any process, thepy crashes in round.

Proof. Suppose & Val(T*);, i.e., there exists a node labebf T* such thaval(x); = 0.
We claim that there is some process ingesuch thalval()»)’} =0:if x=Athenj =1i.
Otherwisex =iy ---i; and Lemma 5.1 implies thatal()»)i.‘1 = 0. In this case, we have
j=1Ii1.

From the algorithmyal(k)’; = 0 if p; fails in sending its initial value tp; and thus
crashes during the first round o

The following lemma describes the set of possible decision values.

Lemma 5.3. The decision value of any process is the initial value of some process in
{p1, P2, ..., pr+1}-

Proof. Suppose any process decidesv in round r. From the algorithmy = ¢ or
r=t+1.

(1) r =¢. From the code ofreg, it follows that p; receives at least+ 1 — r messages
in round: and there exists an indgxe {1, ..., ¢} such thap; decides the current value of
the p;’s variable denoted] (cf. Fig. 2).

(@) If 1< j <t — 1 then, from the algorithm, we have @Val(T/);. In particular,
val(1)! =1 andw; is assigned te; (p;’s initial value) in the first round. This shows
thatv = v;.

(b) If j =1 then Oe Val(T}) N -.-NVal(T'~1). Lemma 5.2 shows thaty, ..., p;_1 have
crashed in the first round. Singe has received at least+ 1 — t messages in round
a message has arrived frgm in this round and thug, may not have crashed during
the first round. Thereforgy; has receiveg;,’s initial valuev, at round 1, and thep;
has setuf to v, at the end of the first round.

(2) If r =t + 1 there are two cases to consider:

(a) Procesy; decidesv = decisior by receiving a messageD, decisiory). From the
algorithm, it is clear thap; has decided at round From the above case, it follows
that p;’s decision value is ijvy, ..., v/}. Thereforev also belongs t¢vy, .. ., v;}.

(b) Procesy; receives naD, decisior;) message in round+ 1. In this casep; decides

somewij with j € {1, ...,7 + 1}. There are two cases to consider:

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 33

(i) 1 < j <t. From the algorithm, we have ®Val(T/). In particular,vaI(A){ =1
andw! is set tov;. Thus,p; decidesy = v;.

(i) j=t+1.Inthiscase, @ Val(TY)N---NVal(T?). From Lemma 5.2, we deduce
that p1, ..., p; have crashed in the first round. Since at moptocesses crash,
pr+1is correct and has sent its initial valug_1 to p; in the first round. Therefore,
pi has set its variablﬁvl?Jrl to v,41 atround 1, and thug; decidesy;+1. O

The next two lemmas provide the key arguments to the uniform agreement property.
Lemma5.4. If p; decidesy and p; decidesy’ both at roundr thenv =v'.

Proof. The proof is by contradiction. Suppose that in roung; andp; decidev andv’,
respectively, and # v’. In this casep; and p; receive at least + 1 — r messages in
roundz. From Lemma 5.3, there are two indideand! such that = v, andv’ = v;. Since
v # v/, we havek # [. For example, assume thiatk I. From the algorithm, @& Val(T%);
and Oe VaI(T")j. Consequently, there exists some node latial 7% such that

val(x)¥ #£0, val(x)§=0, and O<|x|<r-1

There are two cases to consider.

(1) 0< x| €t —2. In this casep; sendwal(x)’; =0top; inround|x|+2<t and
thusval(xj)* = 0. But 0¢ Val(T*);—a contradiction.

(2) |x] =t — 1, i.e., there are some process inditgs. ., i;—1 such thatc =i1---i;_1,
and so

val(iy--+i;~1)% =0 and val(iz---i,—1); #0.
From Lemma 5.1, we have:
val(uf, =val(iy)f, =+~ =val(iy- i, —2)§_ =val(i-- i,_l)’; =0.

Moreover, for any non empty prefix of iy ---i;_1, val(y)f.‘ = null, otherwiseval(y)f =
val(k)f.‘l = 0—a contradiction with the fact that@Val(7¥);. In other words,

val(in)¥ = val(izip)* = - -- = val(i1 - - -i;—1)* = null.

Sinceval(ilmi,,l)f.‘ = null and vaI(ilmit,l)’j‘. = 0, processp;, , crashes during
round ¢ and does not send a messagepoin this round. In the same way, from
val(iy - --iy)¥ = null andval(iz - - ~i1)f.‘[+1 =0, we deduce that;, crashes during rourid- 1
and thus no messages frqgm arrive atp; in roundd + 1, ..., r. Moreover,p; has crashed
in the first round since it has not sent a message; tan this round (/al()n)f?1 =0). Since
t > 2, p; receives no message from in round:. Therefore,p; receives no message
from p, piy, ..., pi,_, in roundz. By definition of T*, all these processes are distinct.
This yields a contradiction with the fact thaj receives at least + 1 — ¢+ messages in
rounds. O

Lemma5.5. If p; decidesy and p; decidesy’” both at roundr + 1 thenv =v'.

34 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

Proof. The proof is similar to the proof of Lemma 5.40

Theorem 5.6. For any: > 2, the Tree algorithm tolerateg crashes and solves the uniform
consensus problem withir+ 1 rounds. Moreover, all correct processes make a decision
by the end of round in all the runs with less thanfaulty processes.

Proof. Termination is obvious, soe for any correct procegs that has not yet decided at
the end of round, dong remains set téalseup to round + 1, and sgp; makes a decision
at the end of round + 1. Moreover, in a run with less tharfailures, any process that is
still alive at the end of roundreceives messages from at least 1 — ¢ processes at each
round, and so makes a decision at round

Validity follows from Lemma 5.3.

For uniform agreement, lgt; andp; be any two processes that decidandv’ at round
r andr’, respectively. From the algorithm,andr’ are equal ta or ¢ + 1. There are two
cases to consider.

(1) r =r’. Then Lemmas 5.4 and 5.5 imply that v'.

(2) r £ r'. For example, assume=t andr’ =t + 1. We consider two cases:

(a) Procesg; is still alive when sending messages in rounel. In this casep; receives
(D, v) from p; and thusp; decidesy’ = v.

(b) Procesgp; does not send a messageptp (because it crashes) in round- 1. Since
p; does not decide in round p; receives messages from at mest ¢ processes in
this round. Procesp; is among thesa — ¢ processes since it is still alive until the
end of round:. Therefore, at least+ 1 processes have crashed in round 1—a
contradiction. Thus, case (b) cannot occur.

This proves thatp; and p;, whether correct or faulty, make the same decision in any
possible case. O

5.3. Asingle algorithm

For eachf, 0 < f <t, we have thus exhibited a uniform consensus algorithm that
achieves the corresponding lower bound of Theorem 4.1. We strengthen the result by
showing that th&&DAUC andTreg algorithms can be stitched together in a non-mutually
destructive way so that the resulting alglom alone achieves the lower bound for all the
values off .3

TheEDAUCandTreg algorithms are combined in the following way: each process runs
EDAUCandTreg in parallel. During the — 1 first rounds, a process decides according to
EDAUC, that is if EDAUC allows it to decide. Otherwise, at roundsr ¢ + 1, a process
decides according foreg unless it receives @, v) message from thEDAUCalgorithm,

3 Since this paper was first written, the first author and Fabrice Le Fessant have devised a more direct
and general “single algorithm” which also solves erttagreement problems including non-blocking atomic
commitment [5].

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 35

in which case it decides (in other words, arEDAUC decision prevails over dreg
decision). We denote the so-built algorithm ®ptEDAUC

Theorem 5.7. The OptEDAUC algorithm solves the uniform consensus problem, tolerates
t crashes, and achieves the lower bounds of Thedrdm

Proof (sketcheyl Validity and termination are obvious.

For uniform agreement, the only delicate point is to prove that this condition is satisfied
even if the decision rules &@DAUC andTree are both applied in a run. Let andp’ be
two processes that decideandv’ at rounds- andr’, respectively. Suppose thatdecides
according ttEDAUCand p’ decides according toreg; hence;’ =t orr’ =r + 1. There
are two cases to consider.

(1) r < ¢. According toEDAUC, processg sends & D, v) message to all processes at
roundr just before deciding. Procegs is alive at the end of round (indeedr < r’) and
receives the€ D, v) message fronp. Since the decisions accordingE®AUC prevail, p’
decides on.

(2)r =t + 1. In this case, procegshas received &D, v) message from some process
g at roundr that forcesp to decidev at roundr + 1.

(a) v’ =t. Sincep’ has not yet made a decision (accordingf@AUC) at round:, p’ has
detected failures at eachround 1,7 — 1, and so it has detected at least1 failures.
From the code ofreg, p’ observes no new failure at roundconsequently, it receives
a message from, and this message {®, v). Procesy has to decide on.

(b) r' =t + 1. Procesy sends a D, v) message to all processes at round 1 before
making a decision. Upon receiving this message, progessght to decide on.

In each case, we have= 1" as needed. O

6. Discussion

The paper has performed an analysis of time complexities for both consensus and
uniform consensus in synchronous systems with crash failures. Our analysis shows that,
as for both the byzantine and the omission failure models, uniform consensus is harder
than consensus for the crash failure model. It is interesting to note that with crash failures,
the difference between these two problems lies in their time complexities, whereas the
discrepancy is already noticeable in terms of their solvabilities with byzantine or omission
failures.

A result of [7] shows that any algorithm solving a problem specification also solves
the uniform version of the specification in most systems that are not synchronous. In
particular, this implies that consensus and uniform consensus have the same complexities
in such systems. Therefore, our result also shows that when they are achievable, uniformity
requirements may force additional costs which depend on the synchrony of the system.

36 B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37

Acknowledgments

We are grateful to Sam Toueg for valuable discussions, and to Idit Keidar and Sergio
Rajsbaum for pointing out an inaccuracy in diust proof of Theorem 4.1. It is a pleasure
to thank the anonymous referees for their precise comments and suggestions on the first
version of this paper, and Michael Merrahd Yoram Moses for the communication of
their papers.

References

[1] M. Aguilera, S. Toueg, A simple bivalency-based proof thaesilient consensus requirest+ 1 rounds,
Inform. Process. Lett. 71 (4) (1999) 155-158.

[2] A. Bar-Noy, D. Dolev, C. Dwork, H.R. Strong, $ting gears: changing algorithms on the fly to expe-
dite Byzantine agreement, in: Proceedings of thelS&kCM Symposium on Principles of Distributed
Computing, 1987, pp. 42-51.

[3] P.A. Bernstein, V. Hadzilacos, N. Goodman, Comency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

[4] T.D. Chandra, S. Toueg, Unreliable failure eetors for asynchronous systems, J. ACM 43 (2) (1996) 225—
267.

[5] B. Charron-Bost, F. Le Fessant, Validity conditiansagreement problems and time complexity, Technical
Report RR-4526, INRIA-Rocquencourt, August 2002.

[6] B. Charron-Bost, R. Guerraoui, A. Schiper, Syrmous systems and perfect failure detectors: solvability
and efficiency issues, in: Proceedings of the Intéonal Conference on Dependable Systems and Networks,
IEEE, 2000, pp. 523-532.

[7] B. Charron-Bost, S. Toueg, A. Basu, Revisiting safety and liveness in the context of failures, in: Proceedings
11th International Conference on Concurrency drge in: Lecture Notes in Comput. Sci., vol. 1877,
Springer-Verlag, 2000, pp. 552-565.

[8] R.A. De-Millo, N.A. Lynch, M.J. Merritt, Cryptographic protocols, in: Proceedings of the Fourteenth ACM
Symposium on Theory of Computing, ACM Press, 1982, pp. 383-400.

[9] D. Dolev, R. Reischuk, H.R. Strong, Early stopping in Byzantine agreement, J. ACM 37 (4) (1990) 720-741.

[10] D. Dolev, H.R. Strong, Polynomial algorithms forultiple processor agreemigrin: Proceedings of the
Fourteenth ACM Symposium on Theory of Computing, ACM Press, 1982, pp. 401-407.

[11] C. Dwork, N.A. Lynch, L. Stockmeyer, Conserssin the presence of partial synchrony, J. ACM 35 (2)
(1988) 288-323.

[12] C. Dwork, Y. Moses, Knowledge and common knowledge in a Byzantine environment: crash failures,
Inform. and Comput. 88 (2) (1990) 156-186.

[13] M.J. Fischer, N.A. Lynch, A lower bound for the time assure interactive consistency, Inform. Process.
Lett. 14 (1982) 183-186.

[14] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process,
J. ACM 32 (2) (1985) 374-382.

[15] E. Gafni, Rounds-by-rounds fault detectors: unifyisynchrony and asynchrony, in: Proceedings of the
Seventeenth ACM Symposium on Principles of Distributed Computing, 1998, pp. 143-152.

[16] A. Gopal, Fault-tolerant broadcasts and multicaste problem of inconsistency and contamination, PhD
thesis, Cornell University, January 1992.

[17] R. Guerraoui, Revisiting the relationship betwerm-blocking atomic commitment and consensus, in: 9th
International Workshop on Distrilbed Algorithms, in: Lecture Notes in Comput. Sci., vol. 972, Springer-
Verlag, 1995, pp. 87-100.

[18] V. Hadzilacos, On the relationship between thensic commitment and consensus problems, in: Fault
Tolerant Distributed Computing, in: Lecture Nstin Comput. Sci., vol. 448, Springer-Verlag, 1987,
pp. 201-208.

B. Charron-Bost, A. Schiper / Journal of Algorithms 51 (2004) 15-37 37

[19] V. Hadzilacos, S. Toueg, A modular approach to faokerant broadcasts and related problems, Technical
Report TR 94-1425, Cornell University, Department of Computer Science, May 1994.

[20] I. Keidar, S. Rajsbaum, A simple proof of the farim consensus synchronous lower bound, Inform. Process.
Lett. 85 (1) (2003) 47-52.

[21] L. Lamport, The weak byzantine generals problem, J. ACM 30 (3) (1983) 668—676.

[22] L. Lamport, Lower bounds on consensus, Unpublished manuscript, March 2000.

[23] L. Lamport, Lower bounds for asynchronous consensu Proceedings of the International Workshop on
Future Directions in Distributed Computing, in: Laot Notes in Comput. Sci., vol. 2584, Springer-Verlag,
2002, pp. 22-23.

[24] L. Lamport, M. Fischer, Byzantine generals and transaction commit protocols, Technical Report 62, SRI
International, April 1982.

[25] L. Lamport, R. Shostak, M. Pease, The Byzaatgenerals problem, ACM Trans. Programm. Languages
Systems 4 (3) (1982) 382—-401.

[26] N.A. Lynch, Distributed Agorithms, Morgan Kaufmann, 1996.

[27] M.J. Merritt, Unpublished notes, 1985.

[28] Y. Moses, S. Rajsbaum, A layered anadysf consensus, SIAM J. Comput. 31 (4) (2002) 989-1021.

[29] G. Neiger, S. Toueg, Automatically increasing the fault-tolerance of distributed algorithms, J. Algo-
rithms 11 (3) (1990) 374-419.

[30] M. Pease, R. Shostak, L. Lamport, Reachingeagrent in the presence of faults, J. ACM 27 (2) (1980)
228-234.

[31] K.J. Perry, S. Toueg, Distributed agreement in the presence of processor and communication faults, IEEE
Trans. Software Engrg. 12 (3) (1986) 477-482.

[32] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E. Shostak,
C.B. Weinstock, SIFT: design and analysis of altfaoierant computer for aircraft control, Proc.
IEEE 66 (10) (1978) 1240-1255.

