Uniform Consensus is Harder than Consensus

(*extended abstract*)

Bernadette Charron-Bost* André Schiper†

Abstract

We compare the consensus problem with the uniform consensus problem in synchronous systems. In contrast to consensus, uniform consensus is not solvable in synchronous systems with byzantine failures. This still holds for the omission failure model if a majority of processes may be faulty. For the crash failure model, both consensus and uniform consensus are solvable, no matter how many processes are faulty. We consider this failure model and we examine the number of rounds required to reach a decision in consensus and uniform consensus algorithms. We show that compared with the best consensus algorithm, any uniform consensus algorithm takes at least one additional round to take a decision. We thus prove that uniform consensus is also harder than consensus whatever the failure model is.

1 Introduction

The problem of reaching agreement in a distributed system in the presence of failures is a fundamental problem of both practical and theoretical importance. One version of this problem, called consensus, considers that each process starts with an initial value drawn from some domain \(V \) and all non-faulty processes must decide on the same value. Moreover, if the initial values are the same, say \(v \), then the only possible decision value is \(v \). Processors in the system are liable to fail by halting prematurely (crash failures), by omitting to send or receive messages when they should (omission failures), or by exhibiting arbitrary behaviors (byzantine failures).

The agreement condition of consensus, namely “no two non-faulty processes decide differently”, may sound odd because it allows two processes to disagree even if one of them fails a very long time after deciding. Clearly, such disagreements are undesirable in many applications since they may lead the system to inconsistent states. This is why one introduces a strengthening of the agreement condition, called the uniform agreement condition, which precludes any disagreement even due to faulty processes. Formally, the uniform agreement condition specifies that no two processes (whether faulty or not) decide differently. The problem that results from substituting agreement for uniform agreement is called the uniform consensus problem.

However, the agreement condition is not meaningless even in systems with benign failures. To see that, suppose that two processes \(p \) and \(q \) decide differently in a run of a consensus algorithm that tolerates crash failures. One of them, say \(p \), is thereby faulty. By

* Laboratoire d’Informatique LIX, École Polytechnique, 91128 Palaiseau Cedex, FRANCE.
† Département de Systèmes de Communication, École Polytechnique Fédérale, CH-1015 Lausanne, Suisse.
a result of Charron-Bost et al. [CBTB00], it follows that in any system with no program-controlled crashes, when \(q \) decides, \(p \) has already crashed and \(q \) knows \(p \) to have crashed. One might take advantage of this knowledge to avoid inconsistencies resulting from disagreement. This makes the agreement condition strong enough for some distributed applications. Consequently, both consensus and uniform consensus are relevant specifications.

No matter the synchrony of the system is, the uniform agreement condition is clearly not achievable if processes may commit byzantine failures since this failure model imposes no limitation on the possible behaviors, and so on the possible decisions of faulty processes. Basically, this is the reason why agreement problems, which have been first studied in the byzantine failure model, have been originally stated with non uniform conditions [PSL80, LSP82]. Afterwards, the problem specifications that have been studied were often non uniform specifications, even in the setting of benign failures: for example, numerous results have been stated for consensus [FLP85, DDS87, DLS88, DRS90, DM90, CT96], and only a few are about uniform consensus [DS84, NT90, Lyn96]. Interestingly, Guerraoui [Gue95] showed that in most partially synchronous systems where processes may commit only crash failures, any algorithm that solves consensus also solves uniform consensus. In such systems, there is thereby no harm to solve consensus instead of uniform consensus. On the other hand, some algorithms that solve consensus in synchronous systems may violate the uniform agreement condition even for the crash failure model.

In this paper, we go over the difference between consensus and uniform consensus in the context of synchronous systems, and the differences in requirements for their solution, depending on the failure model. For byzantine and omission failures, these differences follow from classical results: In the byzantine failure model consensus has been shown to be solvable if less than one third of processes are faulty [PSL80]. As mentioned above, uniform consensus is trivially not solvable in systems with byzantine failures no matter the number of faulty processes is, and so is harder than consensus. In the omission failure model, the comparison between the two problems is far less immediate. Perry and Toueg [PT86] exhibited consensus algorithms that tolerate any number of faulty processes. For uniform consensus, we can use the translation given in [NT90] which translates any algorithm tolerant of crash failures into one tolerant of omission failures. The translation works only if a minority of processes may fail. As long as this assumption holds, any algorithm that solves uniform consensus in the crash failure model is converted by means of this translation into an algorithm that solves uniform consensus and tolerates omission failures. In systems where half or more processes may fail, Neiger and Toueg [NT90] show that uniform consensus cannot be solved with omission failures. As for the byzantine failure model, uniform consensus is therefore harder than consensus for the omission failure model because it is solvable under more restrictive conditions than consensus is.

Our own results concern the crash failure model. Both consensus and uniform consensus are solvable in this model, no matter how many processes are faulty. We show that uniform consensus is still harder than consensus by considering the time complexities of these two problems. For that, we use the well-known synchronized round model of computation that can be emulated in any synchronous system. In the presence of up to \(t \) crash failures, uniform consensus as well as consensus can be solved within \(t + 1 \) rounds. Moreover, Lynch [Lyn96] shows that \(t + 1 \) is a lower bound on the number of rounds required for deciding in the worst case for both of these problems. We refine this analysis by discriminating runs according to the number of failures \(f \) that actually occur: we prove that uniform consensus requires at least \(f + 2 \) rounds whereas consensus requires only \(f + 1 \) rounds if \(f \) is less than \(t - 1 \). For \(f = t - 1 \) or \(f = t \), we show that both consensus and uniform consensus require \(f + 1 \)
rounds. We then present algorithms that achieve these lower bounds. Consequently, there exist early deciding algorithms for consensus where processes decide one round earlier than in any uniform consensus algorithm in most cases ($0 \leq f \leq t - 2$). By refining time complexity analysis in this way, we show that uniform consensus is harder than consensus for the crash failure model.

It is important to note that contrary to [DRS90], we consider the time at which processes decide and not the time at which they halt. This is motivated by the following reasons. From a practical viewpoint, it is clearly useful to determine the time when decisions are available. On the other hand, since the $t + 1$ worst case lower bound result considers the decision time and not the halting time, it seems more relevant to keep the same time complexity measure when refining efficiency analysis of consensus and uniform consensus algorithms.

The paper is organized as follows: Section 2 contains the basic definitions and the formal description of the synchronized round model of computation. Section 3 gives the number of rounds required for deciding in runs of a consensus algorithm with at most f crash failures. We investigate the same question for the uniform consensus problem in Section 4, and we prove that these lower bounds are achievable in Section 5. Section 6 provides some concluding remarks.

2 The Model

We consider synchronous distributed systems consisting of a set of n processes $\Pi = \{p_1, \ldots, p_n\}$. Processes communicate by exchanging messages. Communications are point to point. Every pair of processes is connected by a reliable channel. In such systems, one can emulate a computational model called synchronous model in which computations are organized in rounds of information exchange. On each process, a round consists of message sending, message receipt, and local processing. We now recall the formal description of the synchronous model [Lyn96]: Each process p_i has a buffer denoted buffer_i that represents the set of messages that have been sent to p_i but that are not yet received. An algorithm A consists for each process $p_i \in \Pi$ of the following components: a set of states denoted by states_i, an initial state init_i, a message-generation function msgs_i mapping $\text{states}_i \times \Pi$ to a unique (possibly null) message, and a state transition function trans_i mapping state_i and vectors (indexed by Π) of message to states_i. In any execution of A, each process p_i repeatedly performs the following two actions in lock-step mode:

1. Apply msgs_i to the current state to generate the messages to be sent to each process. Put these messages in the appropriate buffers.

2. Apply trans_i to the current state and the messages present in buffer_i to obtain the new state. Remove all messages from the buffer_i.

The combination of these two actions is called a round of A. Note that in this model, an algorithm specifies the set of messages processes have to send in each round, but not the order in which messages are sent.

We distinguish some of the process states as halting states: they are those from which no further activity can occur. When reaching a halting state of algorithm A, a process stops participating to A. That is, from a halting state no messages are sent and the only state transition is a self-loop.
A run of A is an infinite sequence of A’s rounds. A partial run of A is a finite prefix of a run of A.

Failures
Processes can fail by crashing, that is by stopping in the middle of their executions. A process may crash before or during some instance of the actions described above. A process may thus succeed in sending only a subset of the messages specified to be sent. This can be any subset since in this model, a process does not produce its messages sequentially. After crashing at a round, a process does not send any message at all the subsequent rounds.

A process is said to be correct in a run if it does not crash; otherwise it is said to be faulty. The set of all the runs of an algorithm A in which at most t processes crash is denoted by $Run(A, t)$.

Consensus and Uniform Consensus
In the consensus problem, each process starts with an input value from a fixed value set V and must reach an irrevocable decision on one value of V. The consensus specification is defined as the set of all the runs that satisfy the following conditions:

- **Validity**: If all processes start with the same initial value v, then v is the only possible decision value.
- **Agreement**: No two correct processes decide on different values.
- **Termination**: All correct processes eventually decide.

As explained in the Introduction, this specification allows processes to decide differently if one of them fails. To avoid such disagreements, the agreement property can be strengthened to

- **Uniform Agreement**: No two processes (whether correct or faulty) decide on different values.

The specification that results from replacing agreement by uniform agreement in the consensus specification is called uniform consensus. We say that algorithm A tolerates t crashes and solves (uniform) consensus if all the runs in $Run(A, t)$ satisfy the validity, termination, and (uniform) agreement conditions.

3 Early Deciding in Consensus
A fundamental result about consensus in synchronous systems is that if $n \geq t + 2$, then any consensus algorithm that tolerates t failures must run $t + 1$ rounds in some execution before processes have all decided.\(^1\) This lower bound has been originally stated for consensus in the case of byzantine failures. The result was then extended to the case of crash failures, first for uniform consensus by Dwork and Moses [DM90], and subsequently for consensus by Lynch [Lyn96]. With respect to this worst case time complexity measure, consensus and uniform consensus are therefore two equivalent problems.

\(^1\)Here and in the sequel, we are abusing the language slightly: by processes have all decided we mean that all processes that ever decide have decided.
This time complexity measure can be refined by discriminating runs according to the
number of failures that actually occur: we consider the number of rounds required to decide
not over all the runs of an algorithm that tolerates t crash failures, but over all the runs
of the algorithm in which at most f processes crash for any $0 \leq f \leq t$. For consensus
algorithms, Dolev, Reischuk, and Strong [DRS90] give a lower bound on the number of
rounds required for processes to halt in the runs with at most f faulty processes. More
precisely, they prove the following theorem:

Theorem 3.1 (Dolev et al., 1990) Let A be a consensus algorithm that tolerates t process
crashes. If $n \geq t + 2$ then for each f, $0 \leq f \leq t$, there exists a run of A with at most f
crash failures such that some process has not halted before round $\min(t+1, f+2)$ in that
run.

It is important to notice that a process may decide at some round without reaching a
halting state, namely, it may continue to send messages and to participate to the consensus
algorithm in subsequent rounds. In other words, there may be a difference between the time
at which a process decides and the time at which it halts. Theorem 3.1 does not give the
number of rounds until processes have all decided but rather the number of rounds until
the processes all stop. Moreover, it is not clear how to derive lower bounds for deciding
from lower bounds for stopping in consensus.

Nevertheless, the time at which decisions are taken is a significant time measure: from
a practical view point it is indeed quite important to determine the time when decisions are
available. Moreover, in order to assess the possible efficiency saving allowed by algorithms
that take advantage of the actual number of failures, we need a lower bound on the number
of rounds required for all processes to decide in runs with at most f failures since the $t+1$
worst case lower bound is stated in terms this measure on decision times.

In the remainder of this section, we first recall a standard consensus algorithm in which
processes have all decided by the end of round $f+1$ in all the runs with at most f crash
failures. This algorithm that we call $EDAC$ has been originally described in [LF82]. We
then easily prove that $f+1$ is indeed a lower bound for deciding in consensus algorithms.

3.1 An Early Deciding Algorithm for Consensus

In the $EDAC$ algorithm, each process p_i maintains a variable $Failed$ containing the set of
processes that p_i detects to have crashed. Process p_i learns that p_j crashes during a round
if p_i receives no message from p_j at this round. At the end of every round, each process p_i
updates its variable $Failed$. If $Failed$ remains unchanged during round r, that is p_i detects
no new crash failure, and if p_i has not yet decided, then p_i decides at the end of round
r. Any process that decides on v at round r broadcasts a (D, v) message at round $r+1$
to inform the other processes of its decision and to force the processes that have not yet
decided to decide on v in turn. The code of $EDAC$ is given in Figure 1.

The reader is referred to [LF82] for a correctness proof of $EDAC$. Among $f+1$ rounds of
a run with at most f faulty processes, there must be some round at which no process fails.
In each run of the $EDAC$ algorithm with at most f crash failures, processes have thereby
all decided by the end of round $f+1$ if they are still alive at this moment.

The $EDAC$ algorithm proves that the $f+2$ lower bound of Theorem 3.1 does not hold
when considering the question of early deciding instead of the one of early stopping. This
shows that there is an actual difference between the time at which a process decides and
the time at which it can halt.
states_i

- **rounds** ∈ N, initially 0
- **W** ⊆ V, initially the singleton set consisting of p_i’s initial value
- **done**, a Boolean, initially false
- **halt**, a Boolean, initially false
- **Rec_Failed** ⊆ Π, initially ∅
- **Failed** ⊆ Π, initially ∅
- **decision** ∈ V ∪ {unknown}, initially unknown

msgs_i

if ¬hal then
 if ¬done then send **W** to all processes
 else send (D, decision) to all processes

trans_i

if ¬halt then
 rounds := rounds + 1
 let X_j be the message from p_j, for each p_j from which a message arrives
 if done then halt := true
 if some message (D, v) arrives then
 decision := v
 done := true
 else **W** := **W** ∪ ∪_j X_j
 Rec_Failed := Failed
 Failed := Failed ∪ {p_j : no message arrives from p_j at the current round}
 if Rec_Failed = Failed then
 decision := min(W)
 done := true

Figure 1: The **EDAC** algorithm

3.2 A Lower Bound for Early Deciding in Consensus Algorithms

We now prove that the **EDAC** algorithm is optimal, i.e., at least f + 1 rounds are required for deciding in some run with at most f faulty processes. This result is a straightforward consequence of the t + 1 worst case lower bound.

Theorem 3.2 Let A be a consensus algorithm that tolerates t process crashes. If n ≥ t + 2 then for each f, 0 ≤ f ≤ t, there exists a run of A with at most f crashes in which at least one process decides not earlier than during round f + 1.

Proof: Since f ≤ t, A is a consensus algorithm that tolerates f crash failures. By the worst case lower bound, we know that there exists a run of A with at most f crashes in which some correct process decides not earlier than during round f + 1.

Compared with the lower bounds stated in Theorem 3.1, this result shows that for most of the cases (0 ≤ f ≤ t − 2), it takes at least one additional round to halt after deciding in early deciding algorithms.
4 Early Deciding in Uniform Consensus

We now study the question of early deciding for uniform consensus. We prove a lower bound for uniform consensus greater than the $f + 1$ lower bound for consensus stated in Theorem 3.2. Since this lower bound for consensus is achievable (for example, by the EDAC algorithm), we thereby show that the uniform consensus problem is harder than the consensus problem, even in the context of crash failures.

Theorem 4.1 Let A be a uniform consensus algorithm that tolerates t process crashes. For each f, $0 \leq f \leq t$, there exists a run of A with at most f crashes in which at least one process decides not earlier than during round $f + 2$ if $f \leq t - 2$, and not earlier than during round $f + 1$ otherwise.

Before proving the theorem, we first introduce some additional definitions and notations. Let ρ be a run of an algorithm A. For any $k \leq 1$, we define $\rho[k]$ to be the partial run of A that consists in the k first rounds of ρ. The **conservative extension** of $\rho[k]$ is the unique run ρ' of A such that $\rho'[k] = \rho[k]$ and no process crashes after round k. We say that ρ is f-regular if there are at most f processes that crash in ρ and for every k, $1 \leq k \leq f$, there are at most k processes that crash in $\rho[k]$. If a process crashes at round k and fails to send message m, and if no process crashes after round k, then m is said to be a **last unsent message in ρ**.

There exists a unique failure free run of A, that starts from C; this run is denoted by r_C. On the other hand, for any process p, A admits a unique run ρ^C_p starting from C and in which only p is faulty and crashes from the beginning; this run is called the **silencing of p from C**.

If ρ and ρ' are two runs of A, we say that ρ is **indistinguishable from ρ' with respect to process p**, denoted $\rho \sim_p \rho'$, if p has the same initial state and performs the same sequence of actions in ρ and ρ'.

Finally, if A solves the uniform consensus problem, then for any run ρ of A, $\text{dec}(\rho)$ denotes the unique value that is decided in ρ.

Proof: (of Theorem 4.1) Since our concern is a lower bound result, we can restrict attention to the binary uniform consensus problem, i.e., $V = \{0, 1\}$. Let A be any algorithm that solves the uniform consensus problem and that tolerates $t \geq 1$ crashes. For any integer f, $0 \leq f \leq t$, consider the set of all runs of A in which at most f processes crash. There are three cases to consider.

1. $f \in \{0, \cdots, t - 2\}$. First, we use a bivalence argument borrowed from [FLP85] to show that there is an initial configuration C from which the failure free run and the silencing of some process lead to two different decision values (Lemma 4.2). We then proceed by contradiction: we first show that if in all the runs of A with at most f crashes, all processes decide by the end of round $f + 1$, then any last unsent message of a f-regular run can be “added” without altering the decision value (Lemma 4.3). By successive application of this intermediate result, we obtain that all the f-regular runs starting from some initial configuration C lead to the same decision value as the failure free run r_C. In particular, any silencing of some process from C have the same decision value as r_C, contradicting the preliminary bivalent result (Lemma 4.2).

2. $f = t - 1$. The case studied above provides a run with at most $t - 2$ crashes (and so
with at most $t - 1$ crashes), in which uniform consensus is achieved not earlier than at round $f + 1 = t$.

3. $f = t$. In this case, the lower bound immediately follows from the $t + 1$ worst case lower bound.

\square Theorem 4.1

Lemma 4.2 There is an initial configuration C and there is some process p such that $\text{dec}(r_C) \neq \text{dec}(p_C)$.

Proof: (Same as in [FLP85]). Suppose, for contradiction, that such an initial configuration does not exist. Consider the initial configurations C^0 and C^n such that all processes have initial value 0 and 1, respectively. By the validity property, C^0 is 0-valent and C^1 is 1-valent. Clearly, there are two initial configurations C and C' that differ by the initial value of only one process p and such that for any process q, $\text{dec}(r_C) = \text{dec}(\rho^p_C) = 0$ and $\text{dec}(r_{C'}) = \text{dec}(\rho^p_{C'}) = 1$. In particular, $\text{dec}(\rho^p_C) \neq \text{dec}(\rho^p_{C'})$. Clearly, for any process $q \neq p$, we have $\rho^p_C \sim_q \rho^p_{C'}$ and thus $\text{dec}(\rho^p_C) = \text{dec}(\rho^p_{C'})$ — a contradiction. \square Lemma 4.2

Lemma 4.3 Let f be an integer, $0 \leq f \leq t - 2$. Suppose that in all the runs of A with at most f crashes, all the processes that are still alive at the end of round $f + 1$ have decided by the end of round $f + 1$. Let σ be an f-regular run of A and let m be any last unsent message of σ. If τ is the run of A which is identical to σ except that m is sent in τ, then $\text{dec}(\sigma) = \text{dec}(\tau)$.

Proof: By definition of τ and since σ is f-regular, τ is also an f-regular run of A. Thus, after $f + 1$ rounds, all the processes that are still alive have decided in both σ and τ. Note that any process is correct in τ if it is correct in σ.

Let p be the process that fails to send m and q be the destination of m. Let k be the round of σ during which p crashes. The cases where $k > f + 1$ are trivial. Thus, we assume that $k \leq f + 1$. The proof is by induction on $l = f + 1 - k$, starting with $l = 0$ and ending with $l = f$.

Basis: $l = 0$, i.e., $k = f + 1$. Since $n - f \geq n - (t - 2) \geq 3$, there exists at least one process, different of q, that is correct in both σ and τ. For such a process s, we have $\sigma[f + 1] \sim_s \tau[f + 1]$. This implies that s decides the same value in σ and τ. Therefore, $\text{dec}(\sigma) = \text{dec}(\tau)$.

Inductive step: Assume $l \geq 1$. Suppose the claim is true for any last unsent message in round i of any f-regular run, with $f - l + 2 \leq i \leq f + 1$. Run σ is f-regular, and so there are at most k processes that crash in $\sigma[k]$. Since $k + 1 + l = f + 2$ and $f + 2 < n$, we can find l processes r_1, \ldots, r_l which are different of q, and which do not crash in $\sigma[k]$. Let σ' be the run that is identical to σ, except that:

- At round $k + 1$, q succeeds in sending a message only to r_1 and then crashes. No other processes fail in this round.
- At round $k + 2$, r_1 succeeds in sending a message only to r_2 and then crashes. No other processes fail in this round.

\cdots
• At round $f + 1$, r_{l-1} succeeds in sending a message only to r_l and then crashes.
• Process r_l crashes at the beginning of round $f + 2$, just before sending any message.

No other processes fail in this round and in the later rounds.

Run σ is regular, and thus there are at most $k + l + 1 = f + 2$ crash failures in σ'. Since $f \leq t - 2$, σ' is in $\text{Run}(A, t)$.

Let $\sigma^1, \ldots, \sigma^l$ denote the conservative extensions of $\sigma'[k+1], \ldots, \sigma'[f+1]$, respectively. We can safely extend this notation to $\sigma^0 = \sigma$ because m is a last unsent message of σ. Since σ is regular, there are at most $k + i$ crash failures in σ^i. In particular, there are at most f crash failures in σ^{l-1}. Process r_l is correct in σ^{l-1}, and thus decides by the end of round $f + 1$ in σ^{l-1}. Moreover, σ', σ^{l-1}, and σ^l are indistinguishable to r_i up to the end of round $f + 1$. This shows that process r_l decides the same value by the end of round $f + 1$ in each of these three runs. Since the agreement property is uniform, this implies that

$$\text{dec}(\sigma^{l-1}) = \text{dec}(\sigma^l) = \text{dec}(\sigma').$$

On the other hand, in each run σ^i, $1 \leq i \leq l$, the message that r_{l-1} fails to send to any process $s \notin \{p, q, r_1, \ldots, r_l\}$ at round $k + i$ is a last unsent message of σ^i. Moreover, $\sigma^0, \sigma^1, \ldots, \sigma^{l-1}$ are f-regular runs. In each run σ^i, the message that process r_l fails to send to any process $s \notin \{p, q, r_1, \ldots, r_{l+1}\}$ during $k + i + 1$ is a last unsent message of σ^i. By successive application of the inductive hypothesis, we obtain that $\text{dec}(\sigma^{i-1}) = \text{dec}(\sigma^i)$ for any index i such that $1 \leq i \leq l - 1$. Finally, this shows that

$$\text{dec}(\sigma^{l-1}) = \cdots = \text{dec}(\sigma^1) = \text{dec}(\sigma^0).$$

Equalities (1) and (2) imply that $\text{dec}(\sigma) = \text{dec}(\sigma')$.

Now from run τ, we use a similar construction of regular runs: let τ^i, and $\tau^0 = \tau, \tau^1, \ldots, \tau^l$ denote the so-defined regular runs of A. By a similar argument to those used with σ', σ^{l-1}, and σ^l, we show that

$$\text{dec}(\tau^{l-1}) = \text{dec}(\tau^l) = \text{dec}(\tau').$$

By repeated applications of the inductive hypothesis, we get that

$$\text{dec}(\tau^{l-1}) = \cdots = \text{dec}(\tau^1) = \text{dec}(\tau).$$

This implies that $\text{dec}(\tau) = \text{dec}(\tau')$.

On the other hand, let s be a process that is correct in both σ' and τ' (such a process exists since $f + 2 \leq t < n$). Runs σ' and τ' are indistinguishable to s, i.e., $\sigma' \sim s \tau'$. This implies that $\text{dec}(\sigma') = \text{dec}(\tau')$. So $\text{dec}(\sigma) = \text{dec}(\tau)$, as needed. \square

Lemma 4.3

At this point, it is interesting to compare the result stated in Theorem 4.1 with the lower bounds of [DRS90] for early stopping in consensus algorithms. Since the uniform consensus specification is stronger than the one of consensus, lower bounds for consensus hold for uniform consensus a fortiori. On the other hand, since a process decides before halting, lower bounds for deciding are not greater than those for stopping. This is why our lower bounds of Theorem 4.1 can neither be derived from [DRS90] nor imply those of [DRS90].
5 An Early Deciding Algorithm for Uniform Consensus

In this section, we show that the lower bounds of Theorem 4.1 are achievable in the crash failure model.

5.1 The EDAUC, FloodSet and Tree_\text{t} algorithms

The EDAC algorithm presented in Section 3.1 does not solve the uniform consensus problem.\footnote{To see that, consider a run of EDAC in which all processes are correct, except \(p_1 \) and \(p_2 \), and all the initial values equal 1, except \(p_1 \)'s initial value that is equal to 0. Suppose \(p_1 \) crashes at the first round and succeeds in sending a message only to \(p_2 \), whereas \(p_2 \) crashes at the very beginning of round 2. Process \(p_2 \) cannot detect \(p_1 \)'s crash, and so decides on 0 at the end of the first round just before crashing. The other processes decide at round 3. Since they never receive \(p_1 \)'s initial value, they decide on 1.} However, it is easy to design a variant that solves uniform consensus. For that, we adapt the EDAC algorithm by deferring decision after broadcasting the decision value to all at the next round. This variant, called EDAUC, clearly achieves the lower bound of Theorem 4.1 for every \(f, 0 \leq f \leq t - 2 \). For \(f = t \), we may consider the FloodSet algorithm [Lyn96] that achieves the \(f + 1 \) lower bound of Theorem 4.1 since it solves uniform consensus within \(t + 1 \) rounds. The remaining case \(f = t - 1 \) is more tricky. To handle this case, we exhibit a uniform consensus algorithm Tree_\text{t} that tolerates \(t \) crash failures and such that processes have all decided by the end of round 0 if there are less than \(t \) faulty processes.

5.2 The Tree_\text{t} algorithm

The Tree_\text{t} algorithm is based on the following idea: Processes \(p_1, \ldots, p_{t+1} \) broadcast their initial values during the first round. Process \(p_j \) decides \(v_1 \) (\(p_1 \)'s initial value) if it knows that \(p_1 \) has succeeded in sending \(v_1 \) to all the processes in the first round. In general, \(p_j \) decides \(v_i \) (\(p_i \)'s initial value) if \(p_j \) can decide neither \(v_1 \) nor \(v_2, \ldots, v_{i-1} \), and \(p_j \) knows that \(p_i \) has sent its initial value to all the processes in the first round. Since at most \(t \) processes may crash, each process eventually decides some value of \(\{v_1, \ldots, v_{t+1}\} \). If process \(p_j \) receives a message from \(p_i \) in the second round, \(p_j \) can safely deduce that \(p_i \) has not crashed during the first round and thus \(p_i \) has sent a message to all the processes in the first round. If that is not the case, how can \(p_j \) know whether \(p_i \) has succeeded in sending a message to all the processes in the first round? We claim that \(p_j \) needs only \(t \) rounds to determine whether \(p_i \) has failed or not in sending messages at the first round of a run in which at most \(t - 1 \) processes crash. For this purpose, we use a strategy known as exponential information gathering (EIG, for short) defined in [BDDS87]. The basic structure used by EIG algorithms is a labelled tree, whose paths from the root represents chains of processes along which some values are propagated.

In the Tree_\text{t} algorithm, each process maintains \(t \) EIG trees that are denoted by \(T^1, \ldots, T^t \). Each tree \(T^i \) has \(t + 1 \) levels, ranging from 0 (the root) to the level \(t \) (the leaves). Each node at level \(k, 0 \leq k \leq t - 1 \), has exactly \(n - k - 1 \) children. Each node in \(T^i \) is labelled by a string of process indices as follows: the root is labelled by the empty string \(\lambda \), and each node with label \(i_1 \cdots i_k \) has \(n - k - 1 \) children with labels \(i_1 \cdots i_k l \) where \(l \) ranges over all the elements of \(\{1, \ldots, n\} \setminus \{i_1, \ldots, i_k, i\} \). In other words, all the chains of \(T^i \) consist of distinct processes that are all different of \(p_i \). In the course of the computation, the processes decorate the nodes of their trees with values in \(\{0, 1, \text{null}\} \). Nodes at level \(k \) are decorated during the round \(k + 1 \). Process \(p_j \) decorates the root of \(T^i \) by 1 or 0 depending on whether a message from \(p_i \) is arrived or not at \(p_j \) during the first round. The node labelled by \(i_1 \cdots i_k \)
in T^i is decorated by p_j with 1 if p_{i_k} has told p_j at round $k + 1$ that $p_{i_{k-1}}$ has told p_{i_k} at round k that ... p_{i_1} has told p_{i_2} at round 2 that p_{i_1} has received a message from p_{i_1} at round 1. On the other hand, $i_1 \cdots i_k$ in T^i is decorated by p_j with 0 means that p_{i_k} has told p_j at round $k + 1$ that $p_{i_{k-1}}$ has told p_{i_k} at round k that ... p_{i_1} has told p_{i_2} at round 2 that p_{i_1} has not received a message from p_{i_1} at round 1. Moreover, if the node labelled by $i_1 \cdots i_k$ in T^i is decorated by $null$, then it means that the chain of communication $p_{i_1}, \cdots, p_{i_k}, p_j$ has been broken by a crash failure. In round t, if process p_j detects at most $t - 1$ crashes then it is allowed to decide: p_j decides v_i if 0 occurs in all the trees T^1, \cdots, T^{t-1}, and 0 does not occur in T^t.

Theorem 5.1 Tree$_t$ tolerates t crashes and solves the uniform consensus problem within t rounds in all runs with at most $t - 1$ faulty processes.

The code of the Tree$_t$ algorithm and its correctness proof are given in the appendix.

5.3 A single algorithm

For each f, $0 \leq f \leq t$, we have thus exhibited a uniform consensus algorithm that achieves the corresponding lower bound of Theorem 4.1. It is possible to strengthen this result slightly by designing a single algorithm that achieves these lower bounds all at once. For that, first note Tree$_t$ achieves the lower bounds of Theorem 4.1 for both $f = t - 1$ and $f = t$. The single algorithm is based on the following idea: each process runs EDAUC and Tree$_t$ in parallel. During the t first rounds, a process decides according to EDAUC if it is allowed to make a decision. Otherwise, at rounds t or $t + 1$, a process decides according to Tree$_t$. At round t, an EDAUC decision prevails thereby over any Tree$_t$ decision. It is not hard to see that the resulting algorithm solves the uniform consensus problem, tolerates t crashes, and achieves the lower bounds of Theorem 4.1 all at once.

6 Discussion

The paper has performed an analysis of time complexities for both consensus and uniform consensus in synchronous systems with crash failures. Our analysis shows that as for both the byzantine and the omission failure models, uniform consensus is harder than consensus for the crash failure model. It is interesting to note that the difference between these two problems with crash failures lies in their time complexities, whereas the difference is already noticeable in terms of their solvabilities with byzantine or omission failures.

A result of [CBTB00] shows that any algorithm solving a problem specification also solves the uniform version of the specification in any system that is not synchronous. In particular, this implies that consensus and uniform consensus have the same complexities in such systems. Therefore, our result also shows that when they are achievable, uniformity requirements force additional costs that depend on the synchrony of the system.

Acknowledgments

We are grateful to Sam Toueg for valuable discussions and helpful comments.
References

A Appendix. The Tree$_t$ algorithm

We give here the code and the correctness proof of the Tree$_t$ algorithm.

The code of the Tree$_t$ algorithm is given in Figure 2. In this algorithm, for every string x that occurs as a label of T^i, each process has a variable $\text{val}(x)^i$; the set of values that decorate T^i is denoted by $\text{Val}(T^i)$. If $X = \{\text{val}(x)^i : |x| = k - 1, i \notin x, 1 \leq i \leq t\}$ arrives from p_j at round k then $\text{update}(T^1, \cdots, T^t, X)$ denotes the multiple assignment:

$$\text{val}(x)^i := \text{val}(x)^i, \quad 1 \leq i \leq t, |x| = k - 1, i \notin x, j \notin x, \text{ and } i \neq j.$$

On the other hand, if no message arrives from p_j at round k, then $\text{update}(T^1, \cdots, T^t, \text{null}^*)$ denotes the multiple assignment:

$$\text{val}(x)^i := \text{null}, \quad 1 \leq i \leq t, |x| = k - 1, i \notin x, j \notin x, \text{ and } i \neq j.$$

To prove that Tree$_t$ solves uniform consensus, we first give two lemmas that relate the values of the various T^i. The first lemma describes the relationships between vals at different processes at adjacent levels in the trees T^k.

Lemma A.1 After t rounds of the Tree$_t$ algorithm, for any node label y of T^k such that $\text{val}(y)^k \neq \text{null}$ and for any prefix x_j of y, x is a node label of T^k such that $\text{val}(x)^k = \text{val}(y)^k$. In particular, $\text{val}(x)^k = \text{val}(x_j)^k$.

Proof: Obvious from the definition of the update procedure. \hfill $\square_{\text{Lemma A.1}}$

The second lemma describes when 0 occurs in some tree T^k.

Lemma A.2 If 0 occurs in the set $\text{Val}(T^k)$ at any process, then p_k crashes in round 1.

Proof: Suppose $0 \in \text{Val}(T^k)_i$, i.e., there exists a node label x of T^k such that $\text{val}(x)^i = 0$. We claim that there is some process index j such that $\text{val}(\lambda)^k_j = 0$: If $x = \lambda$ then $j = i$. Otherwise $x = i_1 \cdots i_t$ and Lemma A.1 implies that $\text{val}(\lambda)^k_{i_1} = 0$. In this case, we have $j = i_1$.

From the algorithm, $\text{val}(\lambda)^k_j = 0$ if p_k fails in sending its initial value to p_j and thus crashes during the first round. \hfill $\square_{\text{Lemma A.2}}$

The following lemma describes the set of possible decision values.

Lemma A.3 The decision value of any process is the initial value of some process in $\{p_1, p_2, \cdots, p_{t+1}\}$.

Proof: Suppose any process p_i decides v in round r. From the algorithm, $r = t$ or $r = t + 1$.

1. $r = t$. Then p_t has received at least $n + 1 - t$ messages in round t and there exists an index $j \in \{1, \cdots, t\}$ such that p_t decides $v = w_j^t$.

 (a) If $1 \leq j \leq t - 1$ then, from the algorithm, we have $0 \notin \text{Val}(T^j)_i$. In particular, $\text{val}(\lambda)^j_i = 1$ and w_j^t is assigned to v_j (p_j’s initial value) in the first round. This shows that $v = v_j$.
(b) If \(j = t \) then \(0 \in \text{Val}(T^1) \cap \cdots \cap \text{Val}(T^{t-1}) \). Lemma A.2 shows that \(p_1, \ldots, p_{t-1} \) have crashed in the first round. Since \(p_i \) has received at least \(n + 1 - t \) messages in round \(t \), a message is arrived from \(p_i \) in this round and thus \(p_i \) may not have crashed during the first round. Therefore, \(p_i \) has received \(p_i \)'s initial value in round \(1 \) and \(w_i^t = v_t \) at the end of the first round.

2. If \(r = t + 1 \) there are two cases to consider:

 (a) Process \(p_i \) decides \(v = \text{decision}_j \) by receiving a message \((D, \text{decision}_j) \). From the algorithm, it is clear that \(p_j \) has decided in round \(t \). From the above case, it follows that \(p_j \)'s decision value is \(\{v_1, \ldots, v_t\} \). Therefore \(v \) also belongs to \(\{v_1, \ldots, v_t\} \).

 (b) Process \(p_i \) receives no \((D, \text{decision}_j) \) message in round \(t + 1 \). In this case, \(p_i \) decides some \(w_i^j \) with \(j \in \{1, \ldots, t + 1\} \). There are two cases to consider:

 i. \(1 \leq j \leq t \). From the algorithm, we have \(0 \notin \text{Val}(T^j) \). In particular, \(\text{val}(\lambda)_i^j = 1 \) and \(w_i^j \) is set to \(v_j \). Thus, \(p_i \) decides \(v = v_j \).

 ii. \(j = t + 1 \). In this case, \(0 \in \text{Val}(T^1) \cap \cdots \cap \text{Val}(T^t) \). From Lemma A.2, we deduce that \(p_1, \ldots, p_t \) have crashed in the first round. Since at most \(t \) processes crash, \(p_{t+1} \) is correct and has sent its initial value \(v_{t+1} \) to \(p_i \) in the first round. Therefore, \(p_i \) has set \(w_i^{t+1} \) to \(v_{t+1} \) in round \(1 \), and thus \(p_i \) decides \(v_{t+1} \).

\(\square \) Lemma A.3

The next two lemmas provide the key arguments to the uniform agreement property.

Lemma A.4 If \(p_i \) decides \(v \) and \(p_j \) decides \(v' \) both in round \(t \) then \(v = v' \).

Proof: The proof is by contradiction. Suppose that in round \(t \), \(p_i \) and \(p_j \) decide \(v \) and \(v' \), respectively, and \(v \neq v' \). In this case, \(p_i \) and \(p_j \) receive at least \(n + 1 - t \) messages in round \(t \). From Lemma A.3, there are two indices \(k \) and \(l \) such that \(v = v_k \) and \(v' = v_l \). Since \(v \neq v' \), we have \(k \neq l \). For example, assume that \(k < l \). From the algorithm, \(0 \notin \text{Val}(T^k)_i \) and \(0 \in \text{Val}(T^k)_j \). In other words, there exists some node label \(x \) in \(T^k \) such that

\[
\text{val}(x)_i^k \neq 0, \quad \text{val}(x)_j^k = 0, \quad \text{and} \quad 0 \leq |x| \leq t - 1.
\]

There are two cases to consider:

1. \(0 \leq |x| \leq t - 2 \). In this case, \(p_j \) sends \(\text{val}(x)_j^k = 0 \) to \(p_i \) in round \(|x| + 2 \leq t \) and thus \(\text{val}(x)_i^k = 0 \). But \(0 \notin \text{Val}(T^k)_i \) — a contradiction.

2. \(|x| = t - 1 \), i.e., there are some process indices \(i_1, \ldots, i_{t-1} \) such that \(x = i_1 \cdots i_{t-1} \), and so

\[
\text{val}(i_1 \cdots i_{t-1})_j^k = 0 \quad \text{and} \quad \text{val}(i_1 \cdots i_{t-1})_i^k \neq 0.
\]

From Lemma A.1, we have:

\[
\text{val}(\lambda)_{i_1}^k = \text{val}(i_1)_{i_2}^k = \cdots = \text{val}(i_1 \cdots i_{t-2})_{i_{t-1}}^k = \text{val}(i_1 \cdots i_{t-1})_j^k = 0.
\]

Moreover, for any non-empty prefix \(y \) of \(i_1 \cdots i_{t-1} \), \(\text{val}(y)_i^k = \text{null} \), otherwise \(\text{val}(y)_i^k = \text{val}(\lambda)_{i_1}^k = 0 \) — a contradiction with the fact that \(0 \notin \text{Val}(T^k)_i \). In other words,

\[
\text{val}(i_1)_i^k = \text{val}(i_1 i_2)_i^k = \cdots = \text{val}(i_1 \cdots i_{t-1})_i^k = \text{null}.
\]

14
Since $val(i_1 \cdots i_{t-1})^k_i = null$ and $val(i_1 \cdots i_{t-1})^k_j = 0$, process p_{it-1} crashes during round t and does not send a message to p_i in this round. In the same way, from $val(i_1 \cdots i_t)^k_i = null$ and $val(i_1 \cdots i_t)^k_{i_{t+1}} = 0$, we deduce that p_{i_t} crashes during round $l + 1$ and thus no messages from p_{i_t} arrive at p_i in rounds $l + 1, \ldots, t$. Moreover, p_k has crashed in the first round since it has not sent a message to p_{i_1} in this round ($val(\lambda)^k_{i_1} = 0$). Since $t \geq 2$, p_i receives no message from p_k in round t. Therefore, p_i receives no message from $p_k, p_{i_1}, \ldots, p_{i_{t-1}}$ in round t. By definition of T^k, all these processes are distinct. This yields to a contradiction with the fact that p_i receives at least $n + 1 - t$ messages in round t.

\[\square \text{Lemma A.4}\]

Lemma A.5 If p_i decides v and p_j decides v' both in round $t + 1$ then $v = v'$.

Proof: The proof is similar to the proof of Lemma A.4.

\[\square \text{Lemma A.5}\]

Theorem A.6 Tree\(_t\) tolerates t crashes and solves the uniform consensus problem within t rounds in all runs with at most $t - 1$ faulty processes.

Proof:

Termination is obvious, since for any correct process p_i that does not decide in round t, $done_i = false$ in round $t + 1$. Moreover, in a run with at most $t - 1$ failures, any process that is still alive at the end of round t receives messages from at least $n + 1 - t$ processes at each round, and so takes a decision at round t.

Validity follows from Lemma A.3.

For uniform agreement, let p_i and p_j be any two processes that decide v and v' at round r and r', respectively. From the algorithm, r and r' are equal to t or $t + 1$. There are two cases to consider:

1. $r = r'$. Then Lemma A.4 and Lemma A.5 imply that $v = v'$.
2. $r \neq r'$. For example, assume $r = t$ and $r' = t + 1$. We consider two cases:

 (a) Process p_i is still alive when sending messages in round $t + 1$. In this case, p_j receives (D, v) from p_i and thus p_j decides $v' = v$.

 (b) Process p_i does not send a message to p_j (because it crashes) in round $t + 1$. Since p_j does not decide in round t, p_j receives messages from at most $n - t$ processes in this round. Process p_i is among these $n - t$ processes since it is still alive until the end of round t. Therefore, at least $t + 1$ processes are crashed in round $t + 1$ — a contradiction. Thus, case (b) cannot occur.

This proves that p_i and p_j make the same decision in any possible case.

\[\square \text{Theorem A.6}\]
states
rounds ∈ N, initially 0 ; T^1, \cdots, T^t, whose all values are equal to unknown
w^1, \cdots, w^{t+1} ∈ V \cup \{unknown\}, initially unknown ; v ∈ V, initially p_i’s initial value
decision ∈ V \cup \{unknown\}, initially unknown ; done ∈ \{true, false\}, initially false

msgs
\text{case}
\text{round } = 0:
\text{if } 1 \leq i \leq t + 1 \text{ then send } v \text{ to all processes}
\text{else send null to all processes}
\text{round } = 1, \cdots, t - 1;
\text{send } \{\text{val}(x)^j : |x| = \text{rounds} - 1, j \notin x, 1 \leq j \leq t\} \text{ to all processes}
\text{round } = t:
\text{if not(done) then send } \{\text{val}(x)^j : |x| = t - 1, j \notin x, 1 \leq j \leq t\} \text{ to all processes}
\text{else send } (D, \text{decision}) \text{ to all processes}

trans
\text{rounds} := \text{rounds} + 1
\text{let } X_j \text{ be the message from } p_j, \text{ for each } p_j \text{ from which a message arrives}
\text{case}
\text{rounds } = 1:
\text{for all } j \in \{1, \cdots, t + 1\} \text{ do}
\text{if a message is arrived from } p_j \text{ then}
\quad w^j := X_j
\text{if } j \neq t + 1 \text{ then } \text{val}(\lambda)^j := 1
\text{else if } j \neq t + 1 \text{ then } \text{val}(\lambda)^j := 0
\text{rounds } = 2, \cdots, t:
\text{for all } j \in \{1, \cdots, n\} \text{ do}
\text{if a message is arrived from } p_j \text{ then } \text{update}(T^1, \cdots, T^t, X_j)
\text{else } \text{update}(T^1, \cdots, T^t, \text{null}^*)
\text{if } \text{rounds } = t \text{ then}
\text{if at least } n + 1 - t \text{ messages are arrived then}
\quad \text{done} := \text{true}
\quad \text{if } 0 \notin \text{Val}(T^1) \text{ then decision } := w^1
\quad \text{else if } 0 \notin \text{Val}(T^2) \text{ then decision } := w^2
\quad \text{else}
\quad \quad \text{if } 0 \notin \text{Val}(T^{t-1}) \text{ then decision } := w^{t-1}
\quad \quad \text{else decision } := w^t
\text{rounds } = t + 1:
\text{if not(done) then}
\text{if some message } X_j \text{ is equal to } (D, \text{decision}_j) \text{ then decision } := \text{decision}_j
\text{else if } 0 \notin \text{Val}(T^1) \text{ then decision } := w^1
\text{else if } 0 \notin \text{Val}(T^2) \text{ then decision } := w^2
\text{else}
\quad \text{if } 0 \notin \text{Val}(T^{t}) \text{ then decision } := w^t
\text{else decision } := w^{t+1}

Figure 2: The Tree^t algorithm