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Abstract. This paper introduces a simple notion of layering as a tool for analyzing well-behaved
runs of a given model of distributed computation. Using layering, a model-independent analysis of the
consensus problem is performed and then applied to proving lower bounds and impossibility results
for consensus in a number of familiar and less familiar models. The proofs are simpler and more
direct than existing ones, and they expose a unified structure to the difficulty of reaching consensus.
In particular, the proofs for the classical synchronous and asynchronous models now follow the same
outline. A new notion of connectivity among states in runs of a consensus protocol, called potence
connectivity, is introduced. This notion is more general than previous notions of connectivity used
for this purpose and plays a key role in the uniform analysis of consensus.
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1. Introduction. For almost two decades now, the consensus problem has played
a central role in the study of fault-tolerant distributed computing, e.g., [33, 18, 19,
15, 20, 29, 22, 9, 13]. It has clearly received the greatest amount of attention of any
problem treated in the theoretical literature on distributed computing and has been
studied in a large variety of models and under many types of failure assumptions. The
structure of the consensus problem in different settings is frequently based on closely
related notions. However, proofs for different models are often based on distinct and
somewhat ad hoc techniques. In particular, there have been considerable differences
between the study of consensus in asynchronous models and its study in synchronous
and partially synchronous ones.

In order to cope with the proliferation of distributed computing models, re-
searchers have proposed a variety of simulations between models. The aim is to
establish a relation (often of equivalence) between the possibility of solving problems
of certain types in different models. This is used to establish impossibility results in
particular models or to provide a systematic way to transform protocols written in one
model into protocols for another model. Various such simulations have been given,
e.g., between shared memory and message passing [3]; between snapshot shared mem-
ory and read/write shared memory [1]; between immediate snapshot shared memory
and read/write shared memory [10, 11]; between synchronous and asynchronous mes-
sage passing [6]; and between two shared-memory models of different resilience [12].

This paper attempts to present a uniform approach to the study of solvability
of consensus in various models of computation in which, intuitively, crash failure
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behavior can occur. That is, where a process can be silenced from some point on in
an execution and thus appear as if it has crashed. The standard forms of malicious
(Byzantine) faults [33], in which faulty processes may behave in an arbitrary manner,
satisfy the crashlike behavior condition, as do models of omission failures and, of
course, the usual models of crash failures. Our results apply even to situations in
which there are only link failures [35], provided there are sufficiently many of them
to enable the environment to silence a process.

We start by presenting an alternative proof of the impossibility of consensus in
the asynchronous shared-memory model treated by Loui and Abu-Amara [29]. This
proof is based on a new notion of connectivity which we call potence connectivity and
on an analysis based on a nicely structured subset of the runs. This subset consists
of runs that are obtained by imposing a round-by-round layering structure on the
model. Roughly, we use layerings in the following sense. Given a model of distributed
computation, we identify particular legal sequences of actions for the scheduler, each
of which we think of as generating a “layer.” We require that any way of performing
such layers repeatedly starting from a legal initial state will result in a legal run
in the model. Thus, in a precise sense, such a layering can be viewed as defining
a submodel of the original model.1 Any protocol for the original model translates
directly to one in the submodel. Moreover, the model and submodel generally share
many features. In particular, lower bounds and impossibility results proven for the
submodel translate directly into the original model. The use of layerings facilitates
performing round-by-round analysis: Almost all of our results regarding consensus
will follow from analyzing a single layer of computation.

The benefit of working in a submodel or a set of runs with a simpler structure than
that of the original model is well known; some recent examples are [4, 10, 11, 9, 27, 34].

In this paper we concentrate on proving lower bounds and impossibility results
for the consensus problem; in a sequel paper (as briefly described in [32]) we show
how the ideas of this paper extend naturally to other decision tasks and are useful
also to prove solvability results. First, we perform an abstract and model-independent
analysis of consensus using layering. Based on this analysis, implications for specific
models are obtained by demonstrating that appropriate layerings can be defined in the
model. We exemplify this approach by applying it to the following models: Shared-
memory asynchronous model with one crash failure, message-passing asynchronous
model with one crash failure, message-passing synchronous model with one mobile
failure, and message-passing synchronous model with t crash failures.

For the asynchronous models, we describe two styles of layerings: the synchronic
and the permutation layering. The synchronic layerings we consider define submodels
of the asynchronous models that are very close in structure to being synchronous,
thereby defining “almost synchronous” submodels of the asynchronous models. In-
deed, we show that synchronic layerings can be applied to the synchronous message-
passing model too. The permutation layering is inspired by the immediate snapshot
wait-free model of [10, 34], although we define it both for the message-passing and
for the shared-memory models, both 1-resilient. This appears to be the first variant
of the immediate snapshot model suggested for a message-passing model.

Regarding consensus, we provide the following:
• New, simple and uniform lower bound and impossibility proofs for the stan-
dard synchronous and asynchronous models. In particular, we show a simple

1Layering saves us the trouble of explicitly defining the submodel as a model of computation
with a new transition function, new actions, etc.
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bivalence-style proof for the synchronous case, and a direct round-by-round
construction of a bivalent run (not employing a critical state argument) in
asynchronous cases.

• Stronger impossibility results with respect to submodels of the full asyn-
chronous models, in which there is only a small degree of asynchrony. These
demonstrate how little asynchrony is needed to make consensus unsolvable.

In a sequel paper we show that the asynchronous models are equivalent in terms
of the 1-resilient solvability of decision tasks. In particular, the slightly asynchronous
submodels are no more powerful than the fully asynchronous ones. Moreover, in a
precise sense, these models are strictly stronger than what can be done t-resiliently
in t rounds of the standard synchronous model.

We consider the layering technique to be useful in a number of ways:

• It provides a tool for performing model-independent round-by-round analysis
of decision tasks and related problems.

• Results are obtained directly and not by means of specially tailored reduc-
tions.

• Popular topological treatments (e.g., [25, 10, 26, 34]) focus on the local final
states of processes. We consider states at intermediate stages of the com-
putation as well. Moreover, the state of the environment is represented as
an explicit component in the global state, which facilitates the treatment of
message-passing as well as shared-memory models.

• We make use of a novel notion of potence connectivity of a set of states, whose
definition depends on the decisions taken by the protocol in the possible
futures of these states. In addition we use the more traditional notion of
connectivity based on indistinguishability of states. The combined use of the
two notions proved very useful for unifying the analysis of consensus in the
synchronous and asynchronous models.

Our analysis in this paper concentrates on the consensus problem. By focusing
on this “basic” case we obtain a direct and uniform analysis in simple and elementary
terms. The proofs of all of our results are short and rather straightforward, which
suggests to us that the notions we use are fairly natural. We believe that, with small
modifications, the same type of analysis and style of reasoning can be applied to study
more general problems involving topological connectivity of higher dimensionality
(e.g., [25]).

There are two other papers that attempt to unify synchronous and asynchronous
models in a round-by-round style. The research project of [21], concurrent and inde-
pendent to ours, is based on a notion of fault detectors. Then there is the work of [24],
which uses topological techniques in synchronous, asynchronous, and partially syn-
chronous message-passing systems, with applications to set-consensus. There are two
other papers that independently discovered bivalence arguments for the synchronous
consensus lower bound: in the randomized setting there is [7], while in the determin-
istic setting (same as our application in section 7.2) there is [2]. A different abstract
model based on the runs of a distributed system is proposed in [30]. Recently our lay-
ering technique was used to prove a synchronous lower bound for uniform consensus
[28].

This paper is organized as follows. In section 2 we define the consensus problem
and the basic elements of a distributed computing model, such as processes, envi-
ronment (which can be used to model different communication mechanisms), states,
actions, runs, and failures. In section 3 we illustrate the layering approach in the
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concrete setting of an asynchronous shared-memory system by proving the impossi-
bility of consensus. The notion of potence of a state is introduced here. This section
provides a complete example of the use of our ideas; a reader uninterested in the full
generality of the approach developed in the remaining of the paper could stop here. In
section 4 we present a generic framework for defining models of a distributed system.
As an example, we show how the synchronous mobile failures model is captured in
our abstract framework. In section 5 we develop the generic setting for using potence
connectivity to study consensus in the presence of crashlike failure behavior. In addi-
tion, the connection between potence connectivity and earlier notions of connectivity
is formalized and proven. In section 6 we introduce layering in the generic setting,
and its basic properties. In section 7.1 we illustrate the ideas with an impossibility
result in the mobile failures (synchronous) model, demonstrating that asynchrony is
not necessary in order to make consensus impossible. In section 7.2 we apply our
framework to provide a new proof for the classic synchronous message-passing model.
More applications are presented in section 8 for asynchronous systems, where various
particular layerings are described. The conclusions are in section 9.

2. Preliminaries.

2.1. Consensus. In the consensus problem, we start out in an initial state in
which the local state of a process i consists of a binary initial value variable vi ∈ {0, 1}
and an undefined write-once decision variable di = ⊥. All communication channels (if
any exist) are empty, and shared variables (if any exist) all have an undefined value
of ⊥. We denote the set of (all 2n) initial states of consensus by Con0. A protocol for
consensus is a deterministic protocol D all of whose runs satisfy the following three
properties:

Agreement: All nonfaulty processes reach the same decision.

Decision: Every nonfaulty process irrevocably decides on a value.

Validity: In runs in which all processes start with the same initial value w, the
value that the nonfaulty processes decide on is w.

As presented, the consensus problem is well defined only once we have provided
a model of computation. In this model, we must, in particular, define the structure
of local and global states, as well as what protocols are and how they generate runs
(computations).

In addition, we need to define when a process is faulty in a run, since the consensus
problem distinguishes between the behavior of faulty processes and that of nonfaulty
ones. In section 2.2 we introduce the most basic elements of a distributed system:
states, actions, and runs.2 Then in section 2.3, we consider the notion of a system,
which is simply a set of runs of the model with an associated definition of who is
faulty in each of the runs.

2.2. States, actions, and runs. Throughout the paper we will assume there
is a fixed finite set of n ≥ 2 processes, which we shall denote by 1, 2, . . . , n, and an
environment, denoted by e, which is used to model aspects of the system that are
not modeled as being part of the activity or state of the processes. For example,
we will model the communication channels or shared variables as being part of the
environment’s state. In addition, we will assume that various nondeterministic choices
such as various delays and failures are actions performed by the environment. (What

2Our modeling here and in section 4.1 is based on the work of [36], which in turn extends the
modeling style of [17].
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are typically thought of as actions of the “scheduler” or the “adversary” we model as
actions of the environment.)

For every i ∈ {e, 1, 2, . . . , n}, we assume there is a set Li consisting of all possible
local states for i. The set of global states, which we will simply call states, will consist
of

G = Le × L1 × · · · × Ln.

We denote by xi the local state of i in the state x.
In a given setting, every i ∈ {e, 1, 2, . . . , n} is associated with a nonempty set ACTi

of possible actions. Intuitively, these may include shared-memory operations that the
process can perform, messages the process sends, and any internal bookkeeping op-
erations or computations the process may perform. In principle, a single action can
cause a number of operations to take place. However, the important point is that the
decision to perform this action is taken atomically. We find it convenient to model
the environment as performing actions as well. Depending on the model, the environ-
ment’s actions may involve the delivery of messages, the loss of messages, determining
what failures happen and when they occur, resolving race conditions, etc. We also
think of the environment as being in charge of scheduling the processes, determining
which processes are to move in each round of the computation. A scheduling action is
a set Sched ⊆ {1, . . . , n} of the processes that are scheduled to move next. We assume
the existence of a set acte describing the aspects of the environment’s actions that
handle everything other than the scheduling of processes. Without loss of generality
we will assume that an environment’s action (an element in ACTe) is a pair (Sched, a),
where Sched is a scheduling action and a ∈ acte. A joint action is a pair ā = (ε,a),
where ε = (Sched, a) is in ACTe, and a is a function with domain Sched such that
a(i) ∈ ACTi for each i ∈ Sched. Thus, ā specifies an action for the environment
(via a) and an action for every process that is scheduled to move. We define the set
of joint actions by ACT. Clearly, ACT is determined by a collection of action sets
{ACTi}i=1,...,n and a set acte. Roughly speaking, joint actions are the events that
cause the global state to change into a new state. Thus, for example, a joint action
in which process i sends j a message m, and the environment delivers the message m′

to process i′ will typically cause the local state of i′ to change, as well as modifying
the state of the communication channel between i and j (this state will be part of
the environment’s local state). This is formally captured by the notion of a transition
function, which is a function τ : G ×ACT → G from global states and joint actions to
global states, describing how a joint action transforms the global state.

A deterministic protocol for i is a function Pi : Li → ACTi specifying the action
that i is ready to perform in every state of Li. A nondeterministic protocol for i is
a function Pi : Li → 2ACTi \ ∅ specifying for every state of Li a nonempty set of
actions, one of which i must perform in that state. In this paper, we will focus our
attention on the case in which the processes follow deterministic protocols, while the
environment may follow a nondeterministic protocol.3

Intuitively, we think of a run as consisting of an infinite sequence of global states
and the joint actions that cause the transitions among them. Notice that once we fix a

3The assumption that the environment’s protocol may be nondeterministic is necessary for a
faithful description of many models of interest. The assumption that processes follow deterministic
protocols is without loss of generality in this paper, in which we are interested in worst-case lower
bounds and impossibility results. It is well known and straightforward to show that any result of this
type for a protocol for consensus in a given model that is proved for deterministic protocols applies
to the more general class of nondeterministic protocols as well.
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deterministic protocol D = (D1, . . . , Dn) for the processes, an action ε = (Sched, a) of
the environment uniquely determines the joint action ā = (ε,a) that will be performed
in a given (global) state x: the set Sched determines the processes that participate
in the joint action, and a(i) = Di(xi) for each i ∈ Sched. Proving lower bound and
impossibility results can often be thought of as showing that the adversary, which
here is the environment, always has a strategy that can guarantee the desired bad
behavior. With this end in mind, we will represent a joint action by specifying the
environment action that determines it. Formally, we model a run over G and ACTe

as a pair R = (r, α), where r : N → G is a function from the natural numbers to G
defining an infinite sequence of states of G, and α : N → ACTe defines a corresponding
sequence of environment actions. The intuition will be that the joint action caused
by α(k) and the underlying protocol leads us from a state r(k) to a state r(k + 1).
As we will see later on, once we fix a model of computation and a protocol D for the
processes to follow, there will be additional conditions relating the sequences r and α.
These conditions guarantee, for example, that the actions recorded by α do indeed
cause the transitions among the corresponding states recorded by r. The state r(0) is
called the initial state of the run R. We denote by r(k)i (resp., r(k)e) the local state
of process i (resp., of the environment) in r(k).

An execution is a finite or infinite subinterval of a run, starting and ending in
a state, as described next. For a run R = (r, α) and a pair m ≤ m′ where m is
finite and m′ is finite or infinite, we denote by R[m, m′] the execution starting at the
state r(m) and ending in r(m′) and behaving as R does between them. Formally,
R[m, m′] = (σ, β) where σ has domain [0, m′ − m] and β has domain [0, m′ − m − 1],
and they satisfy σ(k) = r(m+ k) and β(k) = α(m+ k) for every k in their respective
domains. Notice that, in principle, the same execution can occur in different runs,
and for that matter even at different times. A suffix of a run R is an execution of the
form R[m,∞] for some finite m; similarly, a prefix of R is an execution of the form
R[0, m].

Given an execution R (possibly consisting of just one state), let us denote by
R�ε the execution that results from extending R by having the environment perform
the action ε. In models in which performing a joint action at a state results in a
unique next state (which will invariably be the case in this paper), every run of a
deterministic protocol D can be represented in the form x � ε1 � ε2 � · · · where x is
an initial state and εi is an environment action, for every integer i ≥ 0.

2.3. Systems and failures. We define a system to be a pair (R, Faulty) whereR
is a set of runs and Faulty is a predicate on processes and runs of R. In what follows,
Faulty(i, R) will be taken to mean that i is faulty in the run R. We often focus on
the runs of a system S = (R, Faulty) and write R ∈ S as shorthand for R ∈ R.
Notice that Faulty determines who is faulty in a run as a function of the whole infinite
run. Obviously, in some models of distributed computation it is possible to determine
that a process is faulty by considering only a prefix of the run, sometimes even a
single state. In other cases, however, the full history of the run is needed in order
to determine who is faulty (this is the case, for example, in the asynchronous models
of [20, 29]).

With respect to a system S, a state y is said to extend the state x if there is a
finite execution in some run of S that starts in x and ends in y. A run R is said to
contain a state x if x is one of the global states in R. For conciseness, we will use
terminology such as a state x of S, when we mean a state x appearing in a run of S,
or an initial state of S, when we mean a state appearing as an initial state in a run
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of S. By convention, x extends x for every state x of S.

3. Proving impossibility using layering. Our purpose in this section is to
give a simple and elegant proof of the Fischer, Lynch, and Patterson impossibility
result for consensus [20], based on the notion of layering. This concrete example
serves to introduce the more general ideas developed in the rest of the paper. We
will present the proof for the asynchronous shared-memory model [29]. Later on in
the paper we will describe the properties that play a role in the proof. The standard
asynchronous shared-memory model is well known, and detailed formal descriptions
can be found in textbooks such as [5, 31]. We now briefly review the features of the
model that are relevant for the analysis presented in this section.

We assume the standard asynchronous shared-memory model where n processes,
n ≥ 2, communicate by reading and writing to single-writer/multi-reader, shared
variables, and one process can crash. A (global) state x of the system is a tuple
specifying a local state xi for every process i, and the state of the environment, which
in this case consists of the assignment of values to the shared variables, as well as
the set of pending shared-memory operations, and the set of pending reports for read
operations that have been recorded (the value has been read) but not yet reported to
the reading process. The pending operations are the read and write operations that
have been issued for these variables and have not yet taken effect.

The sets ACTi and ACTe of the actions of the processes and the environment are
defined as follows. A process performs an action only when it is scheduled to move.
This action is either a local operation, a read of a shared variable (belonging to it or to
some other process), or a write to one of its own variables. An action of the environ-
ment can have one of three forms: (a) scheduling a process to move—resulting in the
process performing an action, (b) performing a pending shared-memory operation, or
(c) reporting the value read in a recorded read operation to the reading process.

A process that is scheduled to move only a finite number of times in a given
run R is said to have crashed. We define Faulty(i, R) to hold, and we consider i to
be faulty in R exactly if i crashes in R. (Notice that in this model, there is no way
to determine at a finite state x that a given process is faulty in the run; a process
can always “recover” in the future.) As mentioned earlier, we consider deterministic
protocols without loss of generality, because any nondeterministic protocol that solves
consensus in this model can, by fixing the nondeterministic choices in a fixed arbitrary
way, be turned into a deterministic protocol solving it.

A run of a given deterministic protocol D in this model is a run R = (r, α)
satisfying the following:

(i) r(0) ∈ Con0,
(ii) each process follows its protocol, and every pair of consecutive states are

related according to the operations that take place as scheduled by the envi-
ronment.

If in addition

(iii) every read and write action issued is eventually serviced appropriately by the
environment, and

(iv) at most one process fails in R,

then we say that the run is admissible. Let S(D) be the system consisting of the
set of all admissible runs of D and the predicate Faulty described above. Now, the
consensus problem is well defined: D solves consensus if all runs of S(D) satisfy
agreement, decision, and validity with failures as defined by Faulty.
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3.1. Layers in the shared-memory model. We define a layer to consist of a
finite sequence of environment actions. Our intention is to focus on runs of a protocol
that are generated by a particular set of layers. If the set of layers is chosen appro-
priately, these runs can have structural properties that will simplify their analysis.

We define the set Lrw of layers in the asynchronous shared-memory model to
consists of all layers of the forms

• [p1, . . . , pn] and
• [p1, . . . , pn−1],

where the pi’s are process names (elements of {1, . . . , n}), and the names appearing
in a given layer are pairwise distinct. We think of layers of the first type as full
layers, since in such a layer every process moves. Layers of the second type enable
the environment to “silence” a process from any point in the computation; this will
play an important role in determining the “topological” properties of the layered runs
(e.g., in Lemma 3.4(b)). A layer specifies a linear ordering in which the environment
schedules the processes to move. In a given layer, whenever a process pi is scheduled
to move, it performs a single action, and this action (internal, a read or a write) is
serviced (i.e., the read or write action is performed and, in the case of a read, the
value that was read is reported to the reader) before the next process moves. Since
in our model every process can be scheduled to move at any state (although in some
cases the pending operation may just be a “skip” internal operation), the sequence
of environment actions described in a layer of Lrw can be applied at every state.
The intuition behind the definition of Lrw is that a layer consists of a “round” in
which at least n − 1 processes get to move (sequentially). Notice that in an infinite
sequence of layers, at least n − 1 process names appear infinitely often. The layers
just defined are designed to ensure that each layer contributes towards the fairness
conditions (iii) and (iv). As a result, every run generated by an infinite sequence
of such layers is admissible. Notice that a layer of the first type is specified by a
permutation on {1, . . . , n}. We will find it useful to identify a layer of the first type
with the corresponding permutation. Because of this connection we call this layering
a permutation layering.

Once we have fixed the protocol D, we can think of a layer L ∈ Lrw as an individual
“higher-level” action by the environment. An individual environment step in a run
would then consist of performing a whole layer. We define an Lrw-run of D to be a
run of the form

x0 � L1 � L2 � · · · ,
where x0 ∈ Con0 and Li ∈ Lrw for every i ≥ 1. More formally, let us denote by
x · L the state that is reached at the end of an execution that starts in x, where the
processes follow D and the environment performs actions according to L. The Lrw-
run depicted above is a run RL = (rL, α) with α = (L1, L2, . . .) and rL = (x0, x1, . . .)
where for i ≥ 0 we inductively define xi+i = xi · Li+1. Thus, in an Lrw-run, we view
the environment as performing actions consisting of whole layers, and we ignore the
intermediate states that arise “in the middle” of a layer.

Notice that every Lrw-run RL of D corresponds to a unique run R ∈ S(D) that is
obtained from RL by “expanding” the layers into the detailed sequence of environment
actions they describe, and adding the intermediate states. We call a process faulty
in RL if it is faulty in the corresponding run R. We denote by SL(D) the system
consisting of the Lrw-runs of D, with this definition of failures. The argument above
that executing an infinite number of Lrw layers yields an admissible run can now be
formalized as follows.
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Lemma 3.1. For every run RL ∈ SL(D), the run R ∈ S(D) corresponding to RL

is admissible.
Proof. By definition of RL, the corresponding run R is clearly a run of D in the

model. It is admissible because (a) by definition of the layers, each read and write
action that is performed by a process is serviced immediately, and (b) at most one
process can fail in R because in each of the infinite sequence of layers that generate R
at least n−1 of the n processes is scheduled to perform an action; hence, at most one
process can move only a finite number of times in R.

3.2. Potence connectivity. Recall that decisions made by the processes appear
in their local states from the point of decision on. Therefore, any infinite subsequence
of the states of a run will contain the information about the decisions that the different
processes perform in the run. Thus, we do not lose information about the decision
values by considering the states of an Lrw-run instead of looking at the full detail of
the run corresponding to it. If a protocol D solves consensus in the asynchronous
model just described, it must do so in every admissible run. It follows that in every
Lrw-run of D the nonfaulty processes must decide on a value v ∈ {0, 1}. A crucial role
in the proof of impossibility of consensus in the asynchronous shared-memory model
is played by the decision values that are possible in the future of a given global state.
This is captured by the notion of the potential valence (or potence for short)4 of a
state with respect to a set of runs.

Definition 3.2. A state x is w-potent with respect to a system S if x is a state
of a run R ∈ S in which at least one nonfaulty process decides w. The state x is
bipotent if it is both 0-potent and 1-potent.

When discussing potence, we sometimes omit the system S when it is clear from
context. Notice that if a state x is w-potent (resp., bipotent) with respect to SL(D),
then it is guaranteed to be w-potent (resp., bipotent) with respect to S(D): If RL is
the witness proving that x is w-potent in SL(D), then x appears in the run R ∈ S(D)
corresponding to RL, and R is a witness to w-potence of x with respect to S(D).
Clearly, the converse need not hold. Bipotent states play an important role in delaying
(or precluding) consensus, as we shall see in the next section. Our goal will be to show
that every consensus protocol must have a run where agreement is not reached. We
will do this in the next section by demonstrating that every protocol for consensus
must have a run whose states are all bipotent. Such a run we call a bipotent run. The
notion of potence connectivity is a powerful tool for proving this and other impossibility
results.

Definition 3.3. With respect to a system S,
(i) two states x and y have shared potence, denoted by x ∼p y, if both are w-

potent for some w ∈ {0, 1};
(ii) a set of states X is potence connected if the graph (X,∼p) induced by ∼p

on X is connected.
Potence connectedness is not a very strong condition. Indeed, it is easy to check

that a set X of states is potence connected exactly if either (i) for some value w,
all states of X are w-potent, or (ii) there exists at least one bipotent state in X.
Equivalently, X is not potence connected exactly if X contains both 0-potent and
1-potent states but does not contain a bipotent state.

4In [32] we used the term valence instead of potence. This is changed here because the term
valence is used slightly differently in the literature, starting with [20]. Briefly, a state is said to be
w-valent if all extensions decide w. (However, bivalent is equivalent to bipotent.) We thank Gerard
Tel for suggesting the term.
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The following criterion will serve us to prove that two states have shared potence.
Lemma 3.4. Assume the protocol D satisfies the decision property, and let x

and x′ be states of SL(D). If there are states y, y′ ∈ SL(D), where y extends x and
y′ extends x′, such that y and y′ differ at most in the local state of a single process,
then x ∼p x′ with respect to SL(D).

Proof. Let Rx be an execution in SL(D) that ends in state x, and let Rx′ be one
that ends in x′. Since y extends x, there is a finite sequence of layers σ such that
Rx � σ ends in y, and a corresponding sequence σ′ such that Rx′ � σ′ ends in y′.
By assumption, we have that y and y′ differ at most in the local state of process p.
Choose a layer L ∈ Lrw in which p is not scheduled to move. We extend each state by
applying L repeatedly. There are two runs R, R′ ∈ SL(D) such that R = Rx�σ�L∞

and R′ = Rx′ � σ′ � L∞. Both are clearly runs of SL(D), and in both runs process p
is faulty and the rest are not faulty. A straightforward induction on the number of
actions performed by the environment shows that all processes other than p have the
same local state history in the suffix of R starting at y as they do in corresponding
points in the suffix of R′ starting at y′. It follows that the nonfaulty processes reach the
same decision in both. Since D satisfies the decision property, decisions are reached
by the nonfaulty processes in these runs, and we have that x ∼p x′.

Lemma 3.4 directly captures as particular instances many useful cases. Thus, for
example, it implies that if x extends y, then they have a shared potence. Similarly, if
a state z extends both x and y, then x ∼p y. A third useful instance is that if x and
y differ only in the local state of one process, then x ∼p y.

The crux of the impossibility proof is captured in the following lemma, which
shows that the set of successors of a state in SL(D) is guaranteed to be potence
connected.

Lemma 3.5. Assume D satisfies the decision property. For every state x of
SL(D), the set of states Lrw(x) = {y | y = x·L, for some L ∈ Lrw} is potence connected
with respect to SL(D).

Proof. We start by showing two cases in which states of Lrw(x) have a shared
potence, from which the result will follow. For every permutation p1, p2, . . . , pn of
{1, . . . , n} we claim that the following holds:

(i) x · [p1, . . . , pn−1] ∼p x · [p1, . . . , pn].
This is true by Lemma 3.4 because there is a state of SL(D) that extends both

states. This state results from extending the first state by applying the layer L =
[pn, p1, . . . , pn−1], and it also results from extending the second state by L′ =
[p1, . . . , pn−1]. Clearly,

x · [p1, . . . , pn−1] · [pn, p1, . . . , pn−1] = x · [p1, . . . , pn] · [p1, . . . , pn−1],

since in both cases exactly the same actions take place in the same order in the two
layers following x.

For a permutation π = [p1, . . . , pn], we denote the permutation [p1, . . . , pk−1, pk+1,
pk, pk+2, . . . , pn] that is obtained by transposing the kth and (k + 1)st elements of π
by Tr(k, π). We claim the following.

(ii) Let π be a full layer and k ∈ {1, . . . , n − 1}. Then x · π ∼p x · Tr(k, π).
Let y = x · π and y′ = x · Tr(k, π). In moving from x to both y and y′, every

individual process performs the same action. Recall that in our model each shared
variable can be written by a single process. Thus, every process that executes a
write writes the same value in both cases, and the state of the shared memory is the
same in y and in y′. In addition, every process except possibly for pk and pk+1 end
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up in the same local state in y and in y′. Now, if both processes perform a read or
both perform a write, each of them will end up in the same local state in y and in y′.
Finally, if one of them executes a read and the other a write, only the reading process
may end up in a different state in y and in y′. It follows that y and y′ differ at most
in the local state of one process, so y ∼p y′ by Lemma 3.4.

The potence connectivity of Lrw(x) follows: A well-known property of the group
of permutations is that we can transform any permutation π of {1, . . . , n} to any other
permutation π′ using a finite number of single transpositions Tr(k, π) as in (ii). Thus,
by transitivity of connectivity we have that all states x · π obtained from x by a full
layer are potence connected. Each of the remaining states of Lrw(x) is obtained by a
layer [p1, . . . , pn−1] and is connected to the rest by part (i).

The last connectivity property is implicit in [20].
Lemma 3.6. If D satisfies the decision property, then Con0 is potence connected

with respect to SL(D).
Proof. In this proof, given a state z we denote by zj the local state of process j

in the state z. Let x, y ∈ Con0, and for every 0 ≤ m ≤ n define xm by setting

xm
j =

{
yj ∀j ≤ m, and
xj ∀j > m.

Clearly, xm ∈ Con0, and it is easy to check that x0 = x and xn = y. Moreover,
for every 0 < l ≤ n we have that xm−1 and xm differ exactly in the local state of
process m. Con0 is a subset of the states of SL(D). Hence, by Lemma 3.4 we have that
xm−1 ∼p xm. It follows that x and y are potence connected and we are done.

3.3. Using bipotence to prove impossibility. In the previous section we
used the decision requirement of consensus, together with the possibility of having
one process crash, to establish connectivity properties. In this section we show how
these properties, together with the agreement and validity requirements of consensus,
imply the impossibility result. We start by demonstrating that bipotent states can
play a role in delaying, or precluding, consensus.

Lemma 3.7. Assume that the protocol D satisfies the agreement and decision
properties. If a state x of SL(D) is bipotent with respect to SL(D), then no process
has decided in x.

Proof. Assume by way of contradiction that i has decided on value w in x. Since
x is bipotent, there is a run R ∈ SL(D) containing x in which some process, say j,
decides 1−w. Let y be a state of this run extending x in which j has already decided
1 − w. Thus, at y processes i and j have (irrevocably) decided on different values.
Let P be a prefix of this run that ends in y, and let L ∈ Lrw be any full layer. The
run R′ = P �L∞ is a run of SL(D) in which i decides w, process j decides 1−w, and
both are nonfaulty (they move infinitely often). Processes i and j similarly decide w
and 1− w, respectively, in the run R̂ ∈ S(D) corresponding to R′, contradicting the
assumption that D satisfies the agreement property.

The following lemma is the basis for the impossibility proof.
Lemma 3.8. Let X be a potence connected (with respect to SL(D)) set of states

of SL(D). If X contains both 0-potent and 1-potent states, then there is a bipotent
state in X.

Proof. Let X0 be the subset of X consisting of 0-potent states, while X1 is the
subset of 1-potent states. By assumption, both subsets are nonempty. It thus follows
that there must be an edge x0 ∼p x1 with x0 ∈ X0 and x1 ∈ X1 (otherwise X is not
potence connected).
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Since x0 ∼p x1, the states x0 and x1 have a shared potence. If their shared
potence is 0, then x1 is bipotent, while if the shared potence is 1, then x0 is bipotent.
In either case there is a bipotent state in X, as desired.

We can use Lemma 3.6 to obtain a bipotent initial state x0, a well-known result
of [20].

Lemma 3.9. If D satisfies the decision and validity properties, then the set Con0

contains a bipotent state with respect to SL(D).
Proof. Let x0 ∈ Con0 be the initial state in which all initial values are 0, and

let x1 be the corresponding state with all values 1. By the validity condition in
every admissible run of D starting in the state x0 (resp., x1) the nonfaulty processes
decide 0 (resp., 1). Since Lrw-runs correspond to admissible runs, and there is an Lrw-
run starting in x0 and an Lrw-run starting in x1, x0 is 0-potent and x1 is 1-potent. By
Lemma 3.6 Con0 is potence connected, and thus by Lemma 3.8 we obtain that there
is a bipotent state in Con0.

Lemma 3.10. Every protocol D that satisfies decision and validity has a bipotent
run in SL(D).

Proof. By Lemma 3.9, there is a bipotent state, say x0, in Con0. We will construct
a sequence of bipotent states x1, x2, . . . , xk, . . . and a corresponding sequence of layers
L1, L2, . . . , Lk, . . . such that xi+1 = xi · Li+1 for all i ≥ 0. The desired run will be

RL = x0 � L1 � L2 � · · · � Lk � · · · .
It remains to define the two sequences. We will define the layers Li and the states

xi by induction on i. Notice that x0 is bipotent. Let k ≥ 0, and assume that we have
constructed sequences L1, L2, . . . , Lk and x1, x2, . . . , xk with the desired properties.
In particular, xk is a bipotent state. Since D satisfies decision, we have by Lemma 3.5
that Lrw(xk) is potence connected. Since xk is bipotent, Lrw(xk) contains both 0-
potent and 1-potent states. It follows from Lemma 3.8 that there is a bipotent state
y ∈ Lrw(xk). Since y ∈ Lrw(xk) we have by the definition of Lrw(xk) that y = xk · L
for some layer L. Set Lk+1 = L and xk+1 = y.

We conclude the following.
Theorem 3.11. There is no 1-resilient consensus protocol in the asynchronous

shared-memory model.
Proof. We need to show that no protocol D can satisfy all three properties of

consensus: decision, validity, and agreement. Assume that D satisfies decision and
validity. By Lemma 3.10 there is a bipotent run R ∈ SL(D). This run has an
infinite number of bipotent states. If D were to satisfy agreement as well, we have
by Lemma 3.7 that no process could have decided in a bipotent state. But then no
process would ever decide in the run R, and hence no process would ever decide in the
corresponding run of S(D), contradicting the assumption that D satisfies the decision
property.

3.4. Discussion. In this section we have used layering to provide an alternative
proof of the impossibility of consensus in the asynchronous shared-memory model.
Our proof differs from those of [20, 29] in a number of ways. First, it does not depend
on a “critical state” argument; rather, it constructs a bipotent run inductively one
state (or rather one layer) at a time. A subtle aspect of the standard proofs is proving
that prefixes of a run can be extended into full runs in a manner that satisfies the
fairness (or admissibility) conditions. In our case this is simplified by having each layer
contribute “enough” to the fairness conditions to guarantee that any run constructed
as a sequence of layers is admissible. We have attempted to provide a proof that
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makes fairly limited and local use of the particular properties of the model. As a
result, as we shall see in the following, the same proof outline is applicable to the
analysis of consensus in other models. Thus, we believe that the notions of potence
connectivity and layering capture some of the topological structure underlying the
consensus problem (and more generally 1-resilient solvability, as described in [32]). For
example, the layering approach can be used to prove global connectivity properties of a
model, as opposed to the approach described in this section, which shows connectivity
of successors of a state; more about this is in section 9.

We next provide a more general framework and show how the notions of potence
and layering and the proof outline just given can be applied more broadly. We start
by describing how to model different types of distributed systems in a general fashion.

4. Layering consensus in general models. We now consider how layering
can be used to analyze consensus for a variety of models. We start by defining models
of distributed systems in a more general manner, and we show how layering can be
applied to consensus in such generic models.

4.1. Models of distributed computation. Using the notions of section 2.2,
we define a generic model of computation. A model of distributed computation is
determined by sets Li, i ∈ {e, 1, 2, . . . , n}, of local states for the processes and the
environment, and corresponding sets of actions ACTi, for every i ∈ {e, 1, 2, . . . , n},
and by a tuple M = (G0, Pe, τ,Ψ, FGen), where the following hold:

• G0 ⊆ G is called the set of initial states. The identity of G0 will depend on
the type of analysis for which the model is introduced. When we focus on a
particular problem such as consensus, G0 is the set Con0 of initial states for
consensus.

• Pe is a (nondeterministic) protocol for the environment.
• τ is a transition function.
• Ψ is a set of runs over G and ACTe, such that for every pair of runs R and R′

that have a suffix in common, R ∈ Ψ if and only if R′ ∈ Ψ. The set Ψ is called
the set of admissible runs in the model. This is a tool for specifying fairness
properties of the model. For example, properties such as “every message sent
is eventually delivered” or “every process moves infinitely often” are enforced
by allowing as admissible only runs in which these properties hold. The
condition we have on Ψ being determined by the suffixes of its runs ensures
that admissibility depends only on the infinitary behavior of the run.

• FGen is a function that, for each protocol D gives a predicate FaultyD defined
on the runs of D in M (defined below). We remark that the dependence of
the FaultyD on the protocol is useful when we want to capture the idea that
a process is faulty if it deviates from the protocol it is supposed to follow.
This is relevant for handling malicious failures, for example.

We say that a run R = (r, α) is a run of the protocol D = (D1, . . . , Dn) in
M = (G0, Pe, τ,Ψ, FGen) when

(i) r(0) ∈ G0, so that R begins in a legal initial state according to M ,
(ii) α(k) ∈ Pe(r(k)e) for all k,
(iii) r(k + 1) = τ(r(k), (α(k),ak)) holds for all k ≥ 0, where the domain of ak is

the set Sched in α(k), and aki = Di(r(k)i) for every i ∈ Sched,5 and

5Given this choice, any deviations of a process from the protocol, as may happen in a model
with malicious failures, will need to be modeled as resulting from the environment’s actions. The
behavior of faulty processes in such a case will be controlled by the environment.
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(iv) R ∈ Ψ, so that R is admissible.

Condition (ii) implies that the environment’s action at every state of R is legal ac-
cording to its protocol Pe, and condition (iii) states that the state transitions in R
are according to the transition function τ , assuming that the joint action is the one
determined by the environment’s action and the actions that the protocol D specifies
for the processes that are scheduled to move. A run satisfying properties (i)–(iii) but
not necessarily the admissibility condition (iv) is called a run of D consistent with M .
It is a run in which the initial state and local transitions are according to D and M ,
but the admissibility conditions imposed by Ψ are not necessarily satisfied. We will
find it useful to consider such runs in section 6.

The notions of models and protocols give us a way of focusing on a special class
of systems, resulting from the execution of a given protocol in a particular model.
We denote by S(D, M, I) the system (R, Faulty), where R is the set of all runs of
protocol D in the model M that start in initial states from a set I, where I ⊆ G0,
and Faulty = FGenM (D).

We say that a system S satisfies the pasting property if, for every pair R = (r, α)
and R′ = (r′, α′) of runs of S such that r(m) = r′(m′) for some integers m, m′, there
is a run R′′ of S such that R′′[0, m] = R[0, m] and R′′[m,∞] = R′[m′,∞]. Intuitively,
the pasting property says that we can “paste” any prefix ending in a state x with
a suffix starting in x, and obtain a run of S. In a sense, this means that all of the
information that is relevant to determining the future of a state is included in the
state.

It is straightforward to show the following.

Lemma 4.1. Every system of the form S = S(D, M, I) has the pasting property.

Proof. Assume that R = (r, α) and R′ = (r′, α) are runs of S, and that r(m) =
r′(m′), and let R′′ be defined as in the definition of the pasting property. We need
to show that R′′ satisfies conditions (i)–(iv) above. For condition (i), r′′(0) = r(0)
and r(0) ∈ G0 since R satisfies condition (i). For k < m, we have that r′′(k) = r(k),
α′′(k) = α(k), and r′′(k + 1) = r(k + 1). Therefore properties (ii) and (iii) follow for
k < m from the fact that they hold for R. Similarly, for k ≥ m, r′′(k) = r′(m′+k−m),
α′′(k) = α′(m′ + k − m), and r′′(k + 1) = r′(m′ + k + 1 − m) so that (ii) and (iii)
for these values of k follow from the fact that they hold for the run R′ (at time
m′ + k − m). Finally, R′′[m,∞] = R′[m′,∞], so that R′′ and R′ have a suffix in
common. Since R′ ∈ Ψ, it thus follows that R′′ ∈ Ψ so R′′ satisfies (iv), and we are
done.

Finally, recall that the definition of consensus depends in an essential way on the
behavior of the nonfaulty processes. Since we have a very general notion of a Faulty
predicate that may depend on the model, we will restrict attention to cases in which
the notion of failures is not completely out of hand. A predicate Faulty defined for
the runs of a system S induces a notion of a process being failed at a state (with
respect to S). We say that a process i is failed at state x if i is faulty in all runs of S
containing x. Otherwise i is nonfailed at x.

Definition 4.2. A system S = (R, Faulty) satisfies fault independence if the
following hold:

(i) For every state x of S there is a run Rx ∈ S in which x appears, such that
the only processes that fail in Rx are those that are already failed at x.

(ii) No process is failed at an initial state of S.
(iii) If R and R′ have a common suffix, then the same processes fail in both runs.
(iv) At most n − 1 processes fail in any run R ∈ S.
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Part (i) is formally captured by the condition

(∀x of S)(∃Rx ∈ S)∀i [Faulty(i, Rx) iff i is failed at x].

The intuition here is that every instance of faulty behavior should be the result of
the failure of some component in the system. If there is an extension of a state in
which one component fails and another does not, and there is a different execution
where the second component fails but the first one does not, then there should be a
third execution where neither one fails. Failures are thus independent in this sense.
Part (ii) implies that for any initial state x and every process i, there is a run Rx

containing x where i is nonfaulty. (Of course there may be another such run where i
is faulty.) Part (iii) is included because the failures we are interested in (e.g., crashes)
are determined by the infinite part (i.e., suffix) of a run. Notice that there are failure
models in which a failure can be committed at a given point in time and not be
reflected in the processes’ states at a later time. This could cause two runs to have
the same suffix while a particular process behaves in a faulty manner in one of the
runs but not in the other. However, by appropriately modeling the environment’s
state to keep track of such failures, part (iii) can be guaranteed in such models as
well. Part (iv) allows us to concentrate on runs where at least one process did not
fail.

All systems we will consider are assumed to satisfy fault independence.

4.2. Example: The mobile failures model. We illustrate the use of the
abstract framework just described by describing a synchronous model with a single
mobile failure [35]. The model is the standard synchronous message-passing model in
which communication proceeds in lockstep rounds; in every round each process can
send a message to each of the other processes, and messages are delivered in the round
they are sent with no corruptions. The failure assumption is that in every round m
there can be at most one process im some of whose messages are lost. The set of
messages lost by this process in the round in question is arbitrary. We use the term
mobile failure because the identity of the process whose messages may be lost can
change from one round to the next.

We now sketch how this model, which we denote by Mm = (Gm
0 , P m

e , τm,Ψm, FGenm),
can be represented in terms of our formalism. The environment’s state is assumed
to be the same in all states of Gm

0 . The environment’s protocol P m
e is uniform at all

states: nondeterministically choose a process i ∈ {1, . . . , n} and a set T ⊆ {1, . . . , n}
and perform the action ({1, . . . , n}, (i, T )). Notice that in all cases Sched = {1, . . . , n}
so that, intuitively, all processes are scheduled to move in every round. The action
a = (i, T ) specifies that any message sent from i to members of T will be lost. The
actions a process can perform in this model specify a list of at most one message to be
sent to each process in the current round. Thus, given a protocol D = (D1, . . . , Dn)
for the processes, for every state x the protocol Di for i defines an action Di(xi) that
specifies what is its next state and the messages that i sends in that state.

Given a state x and a joint action ā = (ae,a), ae = ({1, . . . , n}, (j0, T0)), the
transition function τm updates the local state of a process i as a function of its current
action, Di(xi), and the list of messages that are sent to it in the current round that
are not blocked (i.e., the list of messages sent to i by processes j according to Dj(xj)
except that if i ∈ T0, we ignore any message that may be sent by j = j0).

The set Ψm makes no restrictions whatsoever: it consists of all possible runs
consistent with Mm. Finally, FGenm(D)(i, R) = false for all processes i, runs R, and
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protocols D; in this model, no process is ever considered faulty.6

Note that Mm satisfies fault independence. Namely, consider any system S =
S(D, Mm, I). All properties of Definition 4.2 hold trivially for S, because no processes
are ever considered faulty in Mm.

5. Abstract impossibility framework for consensus. We are now ready
to initiate a general model-independent analysis of the consensus problem. We will
attempt to show that the general structure of the proof we presented in section 3
is widely applicable. As in section 2.1, we will assume a uniform set Con0 of initial
states for consensus. The local state of every process i in a state x of Con0 consists
of two distinct variables, vi and di. The first has a binary value and is considered i’s
initial value for the purpose of the consensus procedure. The second is a write-once
variable that appears in all of i’s local states and is initially undefined (i.e., initially
di = ⊥). The environment’s state is assumed to be the same in all states of Con0.

In what follows, we shall focus on systems that are compatible with the consensus
problem. We call a system S = S(D, M, I) a system for consensus if (i) the set I
of initial states in S is Con0 and (ii) the local state xi of every process i in each
state x of S contains the variable di, and in all runs the variable di is write-once.
A model M = (G0, Pe, τ,Ψ, FGen) is a model for consensus if Con0 ⊆ G0 and every
system of the form S(D, M, Con0) is a system for consensus.

All models are models for consensus satisfying fault independence.

The consensus problem in section 2.1 is now well defined with respect to a general
model M : a protocol D solves consensus if all the runs of the system S(D, M, Con0)
satisfy agreement, decision, and validity, where faulty processes are defined according
to the function FaultyD = FGen(D).

5.1. Potence and bipotence in general models. Recall the definitions of
w-potence and bipotence with respect to a system S of section 3.2. In particular,
they hold for S = S(D, M, I). In this section we consider two useful ways to show
that x ∼p y in general models. We start with some specific conditions under which
analogues to Lemma 3.4 hold.

Lemma 5.1. Assume that S satisfies decision and let x, y, z be states of S.
(i) For v ∈ {0, 1}, if z is v-potent and z extends y, then y is also v-potent.
(ii) If z extends both x and y, then x ∼p y.
Proof. For part (i), assume z is v-potent. Then there exists a run R = (r, α) of S

and a time m ≥ 0 such that r(m) = z and some nonfaulty process i in R decides v.
Since z extends y, there is a run R′ = (r′, α′) and there are times k′ ≥ k ≥ 0 such
that r′(k) = y and r′(k′) = z, in which the only processes that fail are those that are
already failed at z (fault independence (i) and (iii)). Consider the run R′′ obtained
by pasting the prefix R′[0, k′] with the suffix R[m,∞]. Since the system S satisfies
the pasting property (by Lemma 4.1), R′′ is a run of S. Process i reaches the same
decisions in R and in R′′ (decisions are write-once and the di variable appears in all
of i’s local states). Since R and R′′ have a common suffix, the same processes fail in
both runs (fault independence (iii)). It follows that i is a nonfaulty process deciding v
in R′′. The state y is therefore v-potent and we are done.

6This assumption is made for simplicity. Notice that the process im, some of whose messages
may be lost in a given round m, still receives all messages sent to it. This process should therefore
not be at a disadvantage when it comes to being able to decide on the consensus value. The same
analysis and conclusions as we present here would hold if, for example, we would assume that a
process that is silenced from some point on in a given run is considered faulty in that run.
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We now show part (ii). Since S satisfies the decision property, every state of S,
including z in particular, is either 0-potent or 1-potent (or both). Assume that z is
v-potent. By part (i) y is v-potent, and by the same argument x is v-potent as well.
Hence x ∼p y and we are done.

Recall that a run is bipotent if all of its states are bipotent. An important
consequence of the agreement property is that a consensus protocol cannot terminate
while in a bipotent state. As a result, if a protocol has a bipotent run, then it
cannot solve consensus. This is an important feature underlying impossibility proofs
for consensus. We now capture these claims as they apply to general models more
formally. One feature of many popular models, including the common asynchronous
ones, is that the failure of a process is not determined in finite time. We say that
a system S displays no finite failure if, for all states x of S, no process is failed
at x. Namely, for every process i, there is a run containing x in which i is nonfaulty.
For such systems we have the following lemma, which is a slight generalization of
Lemma 3.7 and whose proof has the same structure.

Lemma 5.2. Let S satisfy the agreement requirement and assume there is a
bipotent run Rb ∈ S. If S displays no finite failure then S does not satisfy the
decision property.

Proof. We will show that if a state x of S is bipotent, then no process has decided
by x. The claim follows, since in a bipotent run no process will ever decide, and we
have by the fault independence assumption part (iv) that there must be at least one
nonfaulty process in Rb.

Assume by way of contradiction that x is bipotent and i is decided at x. Let
its decision at x be di = w �= ⊥. Since x is bipotent, there is a run R containing
x in which some process, say j, decides 1 − w. It follows that there is in R a state
y extending x in which dj = 1 − w. Since S displays no finite failure, both i and j
are nonfailed at y. By the fault independence assumption part (i), there is a run
R′ containing y in which both i and j are nonfaulty. Since di and dj are write-once,
however, in R′ process i decides w while j decides 1−w, contradicting the assumption
that S satisfies the agreement property.

Lemma 5.2 clearly demonstrates that consensus cannot be attained at a bipotent
state of a system that displays no finite failure. The following lemma shows that a
consensus protocol is still unable to terminate in a bipotent state even in systems in
which failures can be observed in finite time.

Lemma 5.3. Let S be a system satisfying the agreement requirement and assume
that no more than t < n processes fail in any run of S. If x is a bipotent state of S
then at least n − t nonfailed processes at x have not decided by x.

Proof. Since x is bipotent, there is a run R0 containing x in which at least one
nonfaulty process decides 0. The set P0 of nonfaulty processes in R0 consists of at
least n− t processes. They are all nonfailed at x, and by the agreement property none
of them has decided 1 by x. By symmetry of 0 and 1, we obtain the existence of a
set P1 of at least n− t nonfailed processes at x that have not decided 0 by x. By the
fault independence property part (i), there is a run R̂ containing x in which the only
processes that fail are the ones that are already failed at x. All processes in P0 ∪ P1

are nonfaulty in R̂. By the agreement property, there is at most one value w ∈ {0, 1}
on which nonfaulty processes decide in R̂. If nonfaulty processes do not decide 0 in
R̂, then no process in P0 has decided by x, and if they do not decide 1 in R̂, then no
process in P1 has decided by x. In either case, the claim holds.
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5.2. Potence connectivity revisited. The central role played by connectivity
in the analysis of consensus and decision problems in general has been observed by
many authors starting with [18]. The traditional notion of connectivity in the liter-
ature [18, 31, 35] is based on comparing the local states of processes in the current
(global) state: Two states are similar if they share enough structure (e.g., equal envi-
ronment and process states), and the transitive closure of this binary relation provides
a corresponding notion of (similarity-based) connectivity. In contrast, the shared po-
tence of states depends on their possible future extensions, and hence so is potence
connectivity. Clearly, a notion of the first kind is independent of the protocol used,
while potence connectivity is protocol dependent. It is our view that potence connec-
tivity plays a crucial role in the structure of consensus. In addition to generalizing our
treatment of potence connectivity slightly, in this section we will draw a formal con-
nection between similarity connectivity and potence connectivity. Intuitively, we will
show that in models in which the environment can always silence an arbitrary process,
similarity connectivity yields potence connectivity. Similarity-based connectivity will
thus prove to be a useful tool for showing potence connectivity.

Similarity connectivity + crashlike behavior ⇒ potence connectivity.
Many failure models considered in the study of fault tolerance allow faulty behavior
in which the state of a process is “hidden” from some point on. Usually this happens
as a result of a process crash, but it can also be the result of the process’s memory
being erased, for example. When such hiding can occur, states that differ only in the
local state of one process will often have a shared potence. It follows that there is a
connection between similarity of states and potence connectivity. We now formalize
this connection.

The state of the environment is often best described as a tuple of distinct com-
ponents, each accounting for a separate aspect of the system. In some models, part
of the components of the state of the environment can affect only the state of a single
process. For example, in a shared-memory model, if there is a variable that can be
read only by process j, then it can affect only j. A similar situation occurs in the
message-passing model, when a channel contains messages that were all sent to j. We
call such components j-components. Clearly, in some models the environment state
has no j-components. When they do exist, the following notions depend on a clear
definition of these components. Two environment states are said to agree modulo j if
they are the same except, possibly, for their j-components. We say that two states x
and y agree modulo j if xi = yi for all i �= j and their environment states xe and ye
agree modulo j. The intuition is that if process j can somehow be “silenced” or if its
local state can be “hidden” and not observed by others in the future, runs resulting
from both states will be the same from the point of view of the other processes. In
models in which there are no j-components to the environment’s state, states x and y
that agree modulo j differ at most in the identity of process j’s local state.

Definition 5.4 (similarity). With respect to a system S,

(i) states x and y are similar, denoted by x ∼s y, if there is a process j such
that (a) the states x and y agree modulo j and (b) there exists i �= j that is
nonfailed in both x and y,

(ii) a set of states X is similarity connected if the graph (X,∼s) induced by ∼s

on X is connected.

A well-known and useful property of the initial states for consensus, Con0, is given
by the following lemma.

Lemma 5.5. The set Con0 is similarity connected.
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Proof. To prove that Con0 is similarity connected we will show that every two
initial states x, y ∈ Con0 are connected by a sequence of states in which each pair of
neighbors are similar. Choose x, y ∈ Con0. For 0 ≤ l ≤ n, define xl by setting

xl
j =

{
yj ∀j ≤ l, and
xj ∀j > l.

(Recall that xe = ye by definition of Con0.) Clearly, xl ∈ Con0, and it is easy to
check that x0 = x and xn = y. Moreover, for every 0 < l ≤ n we have that xl−1

and xl agree modulo l, since the local states of the environment and of all processes,
except possibly that of l, are equal. The assumption that no process is failed in an
initial state (fault independence (ii)), and the fact that n ≥ 2, imply that there is a
process i �= l that is nonfailed in both xl−1 and xl, and hence these two states are
similar.

We now formalize the intuition that similarity connectedness yields potence con-
nectedness when processes may crash.

Definition 5.6 (crashlike behavior). Let X be a set of states of the system S.
We say that S displays crashlike behavior with respect to X if the following condition
holds. For every x, y ∈ X and process j, if x and y agree modulo j, then there exist
in S runs Rx and Ry and times mx, my ≥ 0 such that

(i) rx(mx) = x and ry(my) = y,
(ii) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and
(iii) every process i �= j that is not failed in x and in y is nonfaulty in Rx and

in Ry.
It is worth noting that the abstract definition of crashlike behavior is not restricted

to crash failures. What the definition requires is that the state of j may be “hidden”
from the rest of the processes indefinitely from some point. This can happen in models
of process failures such as crash, omission, or Byzantine failures. It can also happen
in models of link failures [35] or even in some cases when a failure may simply change
the local state of a process, thereby effectively corrupting or erasing its memory.

A very useful relation between potence connectedness and similarity connected-
ness is given by the following lemma.

Lemma 5.7. Let S be a system satisfying the decision property, and let X be a
similarity connected set of states of S. If S displays crashlike behavior with respect to
X, then X is potence connected.

Proof. Since similarity connectedness is the transitive closure of ∼s and potence
connectedness is the transitive closure of ∼p, it suffices to show that for all x, y ∈ X,
if x ∼s y, then x ∼p y. Assume x ∼s y and S displays crashlike behavior with respect
to X ⊇ {x, y}. Then there exists a process j such that (i) the states x and y agree
modulo j and (ii) there exists a process i �= j that is nonfailed in both x and y.
Since S displays crashlike behavior with respect to {x, y}, part (i) implies that there
exist in S runs Rx and Ry and times mx, my ≥ 0 such that (a) rx(mx) = x and
ry(my) = y, (b) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and (c)
every process i �= j that is nonfaulty in x and in y is nonfaulty in Rx and in Ry.
Moreover, by (ii), there is at least one such nonfaulty process i. Since S satisfies the
decision requirement, process i eventually decides in both runs. Let w be the value
that i decides in Rx. Because di is write-once and appears in all local states of i, and
since rx(mx + k)i = ry(my + k)i for all k ≥ 0, we conclude that process i decides on
w in Ry as well. It follows that both x and y are w-potent, and hence x ∼p y.

Notice that Lemma 3.8 holds also for a general model M . Also, recall from the
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proof of Lemma 3.9 that when decision and validity hold, the initial state with all
initial values 0 is 0-potent, while the one with all values 1 is 1-potent; this holds in
the generic setting due to fault independence. Thus, an immediate consequence of
Lemmas 3.8, 5.5, and 5.7 is a generalization of the well-known fact from [20] that when
even a single process can crash, there must be a bipotent initial state for consensus.

Theorem 5.8. Let S be a system for consensus satisfying the decision and
validity conditions. If S displays crashlike behavior with respect to Con0, then there is
a bipotent initial state in S.

6. Layering. In section 3.1 we defined a set of layers to facilitate the analysis of
particular well-behaved runs of the shared-memory model. We now consider a similar
operation for general models. Recall that given a finite execution R we denote by
R�ε the execution that results from extending R by having the environment perform
ε = (Sched, a) in its final state. A run of S = S(D, M, I) can thus be represented in
the form x � ε0 � ε1 � · · ·, where x ∈ I and εi ∈ ACTe for i ≥ 0.

In some cases we are interested in single actions of the environment, while in
others we may be interested in thinking of sequences of such actions as constituting
a “round” or “layer” of the computation. In such cases, we will be interested only in
those states that appear at the end of layers, and we want to ignore the intermediate
states. Given a model M = (G0, Pe, τ,Ψ, FGen), we define a layer over ACTe to be a
nonempty finite sequence ' = ε1, ε2, . . . , εk of actions of the environment, εi ∈ ACTe.
If a protocol D is specified, given a state x, the round ' would lead from x to the
state at the end of x � ε1 � ε2 � · · · � εk = x � ', provided each εi is an action that
can be executed according to the environment protocol in the state at the end of
x � ε1 � ε2 � · · · � εi−1. In this case we say that ' is executable at x. We denote the
state at the end of the execution x � ' by x · '.

One of the principles behind the use of layers and layerings is that we would like
to ignore small steps and intermediate states and center our attention on interesting
landmarks in the computation. Given a set of layers L, we define an L-run to be a
pair RL = (rL, αL), where rL : N → G defines an infinite sequence of states of G, and
αL : N → L is a sequence of layers. We will be interested in L-runs that describe
runs of a system S = S(D, M, I). We say that a run R = (r, α) of S corresponds to
an L-run RL = (rL, αL) if there is an infinite sequence i0 < i1 < · · · < ik < · · ·, such
that i0 = 0 and for all k ≥ 0 we have both (a) r(ik) = rL(k) and (b) the sequence
α(ik), α(ik + 1), . . . , α(ik+1 − 1) is exactly the layer αL(k).

Intuitively, an L-run is a run that is obtained by starting at some initial state and
repeatedly performing layers of L. The run RL keeps track of the specific sequence of
layers used, and of the states at the end of layers. Thus, the view presented in RL

is that the actions that the environment performs are in the form of whole layers. It
is easy to check that there can be at most one run R corresponding to a given RL

in the system S(D, M, I). Suppose that rL(0) ∈ I and for every m ≥ 0 there is an
execution xm � 'm in S = S(D, M, I), where xm = rL(m) and 'm = αL(m). In this
case, there is a unique run R of D consistent with M that corresponds to RL. Notice,
however, that R might still not be a run of D in M , because it may fail to satisfy
the fairness condition Ψ of M . We will be interested in sets L of layers in which this
cannot happen.

Definition 6.1. A nonempty set L of layers is called a layering of a model M
if, for every protocol D, the following condition holds. Every run R of D consistent
with M that corresponds to an L-run RL is a run of D in M .

Notice that for every set of layers, L, we can consider the runs of a protocol D in
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which the environment performs actions according to the layers in this set. A set of
layers is a layering if it satisfies the property that every run obtained by performing
an infinite sequence of layers of L must satisfy the fairness conditions imposed by M ,
as specified by its admissibility condition Ψ. Roughly speaking, then, each layer must
carry out a sufficient amount of work to guarantee that the fairness requirements
imposed by Ψ are ultimately satisfied.

Given a system S = S(D, M, I) and a layering L of M , we define the corresponding
layered system SL = SL(D, M, I) by

SL = {RL | there is a run R of S that corresponds to RL},

with Faulty predicate as follows. Since every run RL of SL has associated a unique
run R of the original system S, the FaultyD predicate from M can be extended to
the runs of SL by defining FaultyD(RL) = FaultyD(R) for all runs RL ∈ SL. Thus, to
figure out who the faulty processes in a run of SL are, we check the corresponding run
of S. Notice, however, that fault independence of S does not necessarily imply fault
independence of SL.

Definition 6.2. A layering L of a model M satisfies fault independence if every
system of the form SL(D, M, I) satisfies fault independence.

There are several obvious close correspondences between SL and S that follow
directly from the definition of SL in terms of the runs of S. First of all, SL inherits
a number of “universal” properties from S: Each of the properties of decision, agree-
ment, and validity is satisfied by SL if it is satisfied by S. In the other direction,
“existential” properties of SL pass on to S: If a state x is bipotent with respect to SL,
then it is bipotent with respect to S. Moreover, if RL is a bipotent run of SL, then
the run R of S that corresponds to RL is a bipotent run with respect to S.

Our use of layering to prove lower bound and impossibility results for consensus
will be based on the close correspondence between SL and S. The general idea is
to assume there is a protocol D solving consensus in some particular model M . An
appropriate layering L for M is then defined, for which it can be shown that there
is a bipotent run (or in the case of a lower bound a bipotent prefix of a run) in
SL = SL(D, M, Con0).

For every state x of SL we define L(x) to be the set of the successors of x in SL.
More formally,

L(x) = {x · ' | ' ∈ L and x � ' is an execution of SL}.

Provided the layering L guarantees that L(x) is potence connected, we can use the
following theorem to prove the existence of a bipotent run in S = S(D, M, Con0). We
can then apply Lemma 5.2 to show that the protocol D does not solve consensus.

Theorem 6.3. Let L be a layering of M satisfying fault independence, and
let S = S(D, M, Con0) be a system for consensus satisfying the decision condition.
Consider the layered system SL = SL(D, M, Con0), and assume that there is a bipotent
initial state in SL. If, for every state x of SL the set L(x) is potence connected in SL,
then there is a bipotent run in the original system S.

Proof. We will construct a bipotent L-run Rb
L in SL, and the corresponding run

Rb will be a bipotent run in S. We obtain this run by starting from a bipotent initial
state x0 and constructing an infinite sequence of layers '0, '1, . . . from L, such that
the state xm = x0 · '0 · . . . · 'm−1 is bipotent with respect to SL for all m ≥ 0. By
construction, for all m ≥ 0 we will have that xm � 'm is an execution in SL, since it
will be taken from L(xm). This means that it is consistent with D and M to execute
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the sequence of environment actions 'm, and corresponding protocol actions starting
in xm, leading to xm+1. Hence the run

Rb = x0 � '0 � '1 � · · ·

will be a run of D consistent with M . The fact that L is a layering of M will then imply
that Rb is a run of S(D, M, Con0). Recall that a bipotent state of SL is necessarily
also a bipotent state of S. Moreover, if a state of a run R is bipotent, then all states
preceding x in R are also bipotent, by Lemma 5.1(i). Since there are infinitely many
bipotent states in Rb (all the states xm from the construction), it follows that all
states of Rb are bipotent, so that Rb is a bipotent run of S.

It remains to define x0 and the sequence of layers 'k. By assumption, there is a
bipotent initial state in SL. We shall choose this state to be x0. Assume inductively
we have chosen '0, . . . , 'm−1 so that xm = x0 · '0 · · · · · 'm−1 is bipotent (with respect
to SL). Since xm is bipotent, the set L(xm) contains both 0-potent and 1-potent
states. By assumption, L(x) is potence connected for every state x of SL, and hence
in particular L(xm) is potence connected. It follows by Lemma 3.8 that there is a
bipotent state x′ ∈ L(xm). By definition of L(xm) there must also be a layer '′ ∈ L
such that x′ = xm · '′. Set 'm = '′, and let xm+1 = x0 · '0 · · · · · 'm−1 · 'm. Clearly,
xm+1 = xm ·'m = xm ·'′ = x′. It follows that xm+1 is bipotent, and we are done.

We have essentially completed the description of our abstract framework for prov-
ing impossibility of consensus. Given a model M , the strategy would be to choose
an appropriate layering L for M . With respect to an arbitrary protocol D, we use
Theorem 5.8 to prove the existence of a bipotent initial state, and use Theorem 6.3
to extend this state into a bipotent run. Finally, from Lemmas 5.2 or 5.3 we conclude
that this run is a counterexample to the decision property of consensus. We now
apply this scheme to prove impossibility of consensus and lower bounds for models
with synchronous message passing.

7. Synchronous message passing. We present two applications of the general
framework to synchronous models: first for mobile failures and then for the classic
crash failure model.

7.1. Impossibility for mobile failures. We illustrate the use of the abstract
framework just described by proving a new impossibility result for consensus in the
presence of a single mobile failure in the synchronous model. This model, denoted
Mm = (Gm

0 , P m
e , τm,Ψm, FGenm), is described in section 4.2. Recall that Mm is the

standard synchronous model with the failure assumption that in every round m there
can be at most one process im some of whose messages are lost. The environ-
ment’s protocol P m

e is uniform in all states: nondeterministically choose a process
i ∈ {1, . . . , n} and a set T ⊆ {1, . . . , n} and perform the action ({1, . . . , n}, (i, T )),
denoted simply by (i, T ); all processes are scheduled to move in every round. The mes-
sages from i to members of T will be lost. Recall that Ψm makes no restrictions whatso-
ever: it consists of all possible runs consistent with Mm, and FGenm(D)(j, R) = false
for all processes j, runs R, and protocols D.

To get the following impossibility result in Mm, we assume for contradiction that
there is a protocol D solving consensus, and prove three basic claims:

(i) there exists a layering L for Mm that satisfies fault independence;
(ii) SL = SL(D, Mm, Con0) displays crashlike behavior with respect to every sub-

set X of its states; and
(iii) for every state x in a layer of SL, the set L(x) is potence connected.
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The following proof establishes these claims in detail. The general scheme will be the
same in the next sections (and we will not include as many details).

Theorem 7.1. No protocol solves the consensus problem in Mm.

Proof. We start by choosing a layering for Mm. Each layer in this case will consist
of a single action of the environment. We use [k] to denote the set {1, . . . , k}, with
[0] denoting the empty set. Define L = {(i, [k]) : 1 ≤ i ≤ n and 0 ≤ k ≤ n}. To see
that L is a layering of Mm, observe that every layer is an action of the environment and
the admissibility condition Ψm in this model makes no restrictions. Hence, for every
protocol D, every run resulting from an infinite sequence of layers of L is immediately
a run of Mm as desired. Moreover, L satisfies (trivially) fault independence because
no processes are ever considered faulty in Mm.

Assume by way of contradiction that there is a protocol D solving consensus in
Mm. Then the system S = S(D, Mm, Con0) is a system for consensus that satisfies
decision, agreement, and validity. Given that no process is ever considered faulty in
this model, we have by Lemma 5.2 that if there is a bipotent run in S, then the decision
property must fail in S, contradicting the assumption that D solves consensus. We
will complete the proof by demonstrating the existence of a bipotent run in S via
Theorem 6.3. Hence, we next consider the layered system SL = SL(D, Mm, Con0).

Our next goal is to show that there is a bipotent initial state in SL. Notice that,
by definition of L, the environment is able to “silence” any given process j from a
given state on, simply by performing the layer (j, [n]) in all subsequent rounds. The
other processes will have no way to learn anything about j’s state. It immediately
follows that SL displays crashlike behavior with respect to every subset X of its states.
More precisely, we verify that Definition 5.6 holds. Let x, y be two states in a layer of
SL, such that x and y agree modulo j. Let R̂x and R̂y be prefixes of L-runs ending in
x and y, respectively. Then the L-runs Rx = R̂x � (j, [n])∞ and Ry = R̂y � (j, [n])∞

are in SL. Letting Rx = (rx, αx) and Ry = (ry, αy), it is straightforward to verify
that there are times mx, my ≥ 0 such that

(i) rx(mx) = x and ry(my) = y,
(ii) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and
(iii) every process i �= j that is not failed in x and in y is nonfaulty in Rx and

in Ry.

Recall that S is a system for consensus satisfying decision and validity. As men-
tioned above, SL inherits these properties from S. It now follows from Theorem 5.8
that there is a bipotent initial state in SL.

We are finally in a position to apply Theorem 6.3 to derive the existence of
a bipotent run Rb in SL. To do so, we still need to show that for every state x
of SL, the set L(x) is potence connected. For every pair of processes j, j′ we have
that x · (j, [0]) = x · (j′, [0]) because in both cases no messages are lost in the round
following x. It follows that x · (j, [0]) ∼s x · (j′, [0]). Moreover, for every k < n we have
that x · (j, [k]) ∼s x · (j, [k + 1]), because the two states can differ only in the state
of process k + 1. It follows that L(x) is similarity connected for all x. That L(x) is
potence connected now follows from Lemma 5.7, since S displays crashlike behavior
with respect to L(x). We thus obtain that there exists a bipotent run Rb in SL, and
the run of S that corresponds to Rb is bipotent with respect to S, as desired.

Theorem 7.1 illustrates the fact that it doesn’t take much to make consensus
impossible. The adversary in Mm has fairly limited powers. Furthermore, we obtained
the impossibility with a layering that restricts the adversary even more. We remark
that this result can be obtained by a modification of the proof of a theorem by Santoro
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and Widmayer in [35]. Their analysis involved attaining consensus in the presence of
communication link failures. Their proof is the only one we have found that predates
this paper and that uses a bipotence-based argument in the style of Fischer et al. [20]
in the synchronous context.

7.2. The synchronous lower bound. The analysis we performed for the mo-
bile failure model Mm in the synchronous case should, intuitively, apply equally well
to the standard t-resilient case in the synchronous model. In this model there is a
bound of t on the total number of processes who may fail in the run, and a process
some of whose messages are lost is considered faulty. The well-known lower bound for
this case (originally due to [18, 15]) states that every consensus protocol must require
at least t + 1 rounds in its worst-case run. Roughly speaking, any prefix consisting
of t rounds of a run of Mm can be viewed as a prefix of a run in the standard omis-
sions failure model with at most t failures. (Formally, the only modification required
would be to have the environment’s state record processes that have omitted in the
past.) The impossibility of solving consensus in Mm therefore immediately implies
that there can be no protocol solving consensus in t rounds in the omissions model.
For if one existed, it would also solve consensus in Mm. This argument immediately
implies the (t+1)-round lower bound for the omissions and Byzantine failure models.
We cannot, however, use the impossibility for Mm to derive the lower bound for the
crash failure model. Nevertheless, even in the crash failure model one might expect
to prove that there will exist a bipotent state at the end of round t, and thus derive
the (t + 1)-round lower bound just as in our analysis for Mm. A close inspection,
however, shows that things are not that simple. There will typically not need to be a
bipotent state at the end of round t. But the essence of this idea still works.

We shall now provide the lower bound analysis for the crash failure model and a
number of related failure models at once. We assume the failure model satisfies the
following: (i) in the first round in which a process fails, the environment can block
the delivery of an arbitrary subset of its messages; (ii) the environment can silence a
faulty process forever in all rounds after the first one in which it fails; and (iii) the
environment’s local state keeps track of the processes that have failed. It is easy to
check that it satisfies fault independence. The layers we will focus on will consist of
single environment actions, each corresponding to a single round of the synchronous
model. Specifically, we consider two kinds of actions by the environment:

clean This environment action, applicable at all states, involves no new process
failure. Messages of failed processes are not delivered, but all messages of
nonfailed processes are delivered.

(j, k) This action is applicable to a state x only if fewer than t processes are failed
at x, and process j is not failed at x. As before, messages of failed processes
are not delivered, while all messages of nonfailed processes other than j are
delivered. The messages of j act as with the action (j, [k]) in Mm: Those
addressed to processes up to and including k are not delivered, while the
others are delivered.

We denote the layering consisting of all actions of these types by Lt. Notice that
the number of processes that fail in a run of SLt is at most t, since once t processes
are failed at a state, all later layers will be clean. It is now straightforward to show
the following.

Lemma 7.2. Let M be one of the standard synchronous t-resilient models with
either crash, omission, or Byzantine failures. Let D be a protocol for the processes in
the model M , and let S = S(D, M, Con0). Finally, let x be a state of SLt . Then
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(i) Lt is a layering of M that satisfies fault independence;
(ii) for every state x of SLt the set Lt(x) is similarity connected; and
(iii) if no more than t − 2 processes are failed at x, Lt(x) is potence connected.

Proof. For part (i), recall that in a run of SLt the number of failed processes
does not exceed t. Moreover, every Lt action is a legal action for the environment
in the model M . It follows that Lt is a layering of S. Also, it is easy to check fault
independence.

Part (ii) follows the pattern from Mm: If t processes are failed at x, then the
set Lt(x) consists of the singleton state x � clean and is hence trivially similarity
connected. If fewer than t processes are failed at x, then Lt(x) = {x � clean} ∪ {x �
(j, k)|j not failed in x}. It is straightforward to check that x� (j, k) ∼s x� (j, k +1)
for all j and k < n; additionally, x � clean ∼s x � (j, 0). It follows that Lt(x) is
similarity connected in either case.

Finally, for part (iii), notice that SLt displays crashlike behavior with respect to
every set X consisting of states in each of which at most t − 1 processes are failed.
Since an Lt-action fails at most one new process, if at most t − 2 processes are failed
in x, then Lt(x) is similarity connected by part (ii), and at most t − 1 processes are
failed in any given state of Lt(x). It now follows from Lemma 5.7 that Lt(x) is potence
connected and we are done.

We thus have the following lemma.

Lemma 7.3. Consider the system SLt = SLt(D, M, Con0). Let x0 be a bipotent
state in a layer of SLt in which no more than f processes are failed. Then there is an
Lt-execution with states x0, x1, . . . , xt−f−1, such that xt−f−1 is bipotent and no more
than t − 1 processes are failed in xt−f−1.

Proof. We prove by induction on m, for 0 ≤ m ≤ t − f − 1, that an execution of
the desired form exists, with xm bipotent and where no more than m + f processes
are failed in xm. The basis m = 0 holds by assumption. Assume inductively that
the claim holds for m < t − f − 1. Thus, we have that m + f < t − 1 processes are
failed in xm. By Lemma 7.2(iii) we have that Lt(xm) is potence connected, and by
an argument similar to the one in the proof of Theorem 6.3, there is a bipotent state
xm+1 ∈ Lt(xm). By definition of Lt, the number of failed processes in xm+1 is at
most m + f + 1 ≤ t.

Since Theorem 5.8 guarantees the existence of a bipotent initial state with f = 0
failed processes, Lemma 7.3 immediately implies the existence of a bipotent state
xt−1 at the end of round t − 1. By Lemma 5.3, this gives us a t-round lower bound
for consensus. The true (t + 1)-round lower bound is obtained by showing that two
rounds are still necessary after a bipotent state.

Lemma 7.4. Under the conditions of Lemma 7.2, assume that t ≤ n − 2 and
let D be a protocol for consensus. If x̂ is a bipotent state in a layer of SLt , then there
is a state y ∈ Lt(x̂) in which at least one nonfailed process has not decided.

Proof. Notice that a state x with t failed processes cannot be bipotent, since there
is a unique infinite Lt extension starting at x. Hence, to be bipotent, the state x̂ can
have no more than t − 1 failed processes. By Lemma 7.2(ii), we have that Lt(x̂) is
similarity connected. Since x̂ is bipotent, there are states y0, y1 ∈ Lt(x̂) such that y0 is
0-potent and y1 is 1-potent. The similarity connectivity of Lt(x̂) implies the existence
of states z0, z1 ∈ Lt(x̂) (not necessarily distinct) satisfying z0 ∼s z1 that are 0- and 1-
potent, respectively. Recall that all states of SLt have at most t faulty processes. Since
t ≤ n−2 and z0 and z1 agree modulo j for some j, it follows that there is at least one
process i �= j such that i is not failed in both states and z0

i = z1
i . Assume by way of
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contradiction that every nonfailed process is decided in both z0 and z1. In particular,
i is decided, say with value v. Agreement implies that in both states, every nonfailed
process decides v. It follows that both z0 and z1 are v-potent, and neither of them
is (1− v)-potent, contradicting the assumption that one of them is 0-potent and the
other is 1-potent.

We can now put the two results together and obtain the desired lower bound.
Theorem 7.5. Let t ≤ n − 2. Every t-resilient protocol for consensus in syn-

chronous models where faulty processes can either crash, omit, or behave in a Byzan-
tine fashion has a run in which decision requires at least t + 1 rounds. Moreover, for
t = n− 1, every such protocol has a run in which decision requires at least t rounds.

This result was first proved for crash failures by Dolev and Strong [15], and the
latest version of the proof is in [16]. Our proof here is the first one we are aware
of that is in the style and spirit of the impossibility proofs for the asynchronous
case.7 Moreover, we feel that it is even simpler than the one of [16]. In addition to
generalizing the lower bound for t-resilient consensus, we feel that our proof provides
further insight into the structure of consensus protocols in this model. Let us briefly
consider an example. It is well known [33] that there are t-resilient consensus protocols
that are guaranteed to decide in precisely t + 1 rounds. Thus, the worst-case lower
bound of Dolev and Strong is tight. We call a protocol in which consensus is always
reached in at most t + 1 rounds fast. We can now show the following.

Lemma 7.6. Let D be a fast t-resilient consensus protocol. For every execution
with states x0, x1, . . . , xk, xk+1 of D, if at most k processes have failed by xk, and the
(k + 1)st round is failure-free, then xk+1 cannot be bipotent.

Proof. By assumption, only k processes have failed by xk+1. If xk+1 is bipotent,
then by Lemma 7.3 it can be extended to a run with a bipotent state xt at the end of
t rounds. By Lemma 7.4, two more rounds are necessary for agreement in the worst
case, contradicting the assumption that D is fast.

Clearly, Lemma 7.3 also partially describes the situation in runs in which po-
tentially more than one process can crash in a given round. It matches the upper
(and lower) bounds given in [16], which show roughly that if in some execution k +w
crashes are detected by the end of round k, then agreement can be secured by the
end of round t + 1 − w. Hence, by allowing k + w crashes by the end of round k,
the environment has essentially “wasted” w faults in its quest to delay agreement.
Lemma 7.3 guarantees that the environment has not lost more than w rounds in this
case.

8. Asynchronous message passing. In section 3 we illustrated the layering
technique by proving impossibility of consensus in the asynchronous shared memory
model. The proof was based on a “permutation layering,” in which processes move
one at a time and there is very little concurrency. Our proof of impossibility for Mm,
on the other hand, considered every synchronous round to be a layer, and such a layer
contains a great deal of concurrency. In this section we apply our framework to prove
impossibility for the asynchronous message-passing model. We will give two proofs:
one using a permutation layering based on the proof of section 3 and the other using
a “synchronic layering,” which is very close to the layering used in the synchronous
model Mm. We do this to illustrate the closeness of the different models and to
show the choice and flexibility that are often provided by the layering technique.

7We have recently been informed that Aguilera and Toueg [2] have independently and slightly
later given a proof for this result using a bipotence argument. The structure of their proof is similar
to ours. Bar-Joseph and Ben-Or also reported having found some of the arguments in [7].
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As we have already seen in the shared-memory case, in asynchronous models “slow”
behavior of processes can be used to imitate the omitting behavior in Mm. The small
but crucial difference now will be that, in the asynchronous model, delayed messages
will nevertheless eventually be delivered or, similarly, a slow process that is about to
write a variable will ultimately write the value. In the synchronous model Mm, the
lost messages are gone forever. Hence, to perform a careful analysis of the round by
round evolution, we need to consider as part of the state (i.e., in the environment’s
local state) the status of the messages in transit or, similarly, the current values of
shared variables. In this sense, our treatment goes slightly beyond the scope of most
of the recent work on topological approaches, in which the state of the environment
does not play a role, and asynchronous message-passing models are often somewhat
subtle to deal with.

Consider the standard (see, for example, [20, 31]) asynchronous message-passing
model Mmp in which processes communicate by message passing and both processes
and communication are asynchronous. A process is faulty if it is scheduled to move
only a finite number of times in an infinite run. The celebrated result of Fischer,
Lynch, and Paterson [20] proving the impossibility of solving consensus in the presence
of a single crash failure was carried out in this model. In the asynchronous message-
passing model Mmp, an action for i is a pair: it contains a local action on the variables
of the local state, and a communication action, which is either skipi that does nothing,
or is a sendi(j, m) action, specifying the sending of the message m to process j. The
effect of a sendi(m, j) action is to change the environment’s state by recording the
new message as being in the channel between i and j. For the definition of similarity
among states in this model, we consider the j-component of the environment’s state
to consist of the set of channels whose destinations are process j. Since channels
are point-to-point in this model, components corresponding to different processes are
disjoint. The environment’s actions consist of either scheduling a process i to move,
or delivering a set of one or more messages that have been sent and not yet delivered
to their destination. The fairness conditions in this model are that (a) at most one
process can fail in any given run and (b) every message that is sent to a process that
does not fail in the run must eventually be delivered.

In this model we consider a layering Lmp consisting of all layers of the following
three types:

• [p1, . . . , pn],
• [p1, . . . , pn−1], and
• [p1, . . . , pk−1, {pk, pk+1}, pk+2, . . . , pn] with k < n.

The first two layers are of the same form as in the layering Lrw for the shared-memory
model. In a layer of Lmp, when a process i is scheduled to move it first performs
its action, and then it receives all the messages that have been sent to i by that
point and have not yet been delivered (if any exist). The third type of layer is
considered a full layer, since it involves all processes as the first type does. In this
case, the processes take steps in the linear order given by the sequence, except that pk
and pk+1 move concurrently. Thus, a message sent by one of these two processes
to the other will not be delivered in the current layer. The reason we use the new
third type of layer is that with this particular layering, a transposition in a layer
of the first two types can change the local state of both pk and pk+1. Whereas in
the case of Lrw a move by a process involved either a read or a write, in Lmp when
a process moves it may both send a message and receive messages. Adding a layer
of the third type enables us to take smaller steps, in which at most one process at a
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time will change its state. We identify a layer of the first type with the corresponding
permutation on {1, . . . , n}. For a permutation π = [p1, . . . , pn], we denote the layer
[p1, . . . , pk−1, {pk, pk+1}, pk+2, . . . , pn] of the third type by π{k,k+1}. Notice that the
set notation in layers of the third type is justified, since the exact same sequence of
operations occurs in π{k,k+1} and π{k+1,k}. Hence, for every state x of SLmp(D) and
permutation π we have that x · π{k,k+1} = x · π{k+1,k}.

We can show the following.
Lemma 8.1. Let D be a protocol for the processes in the model Mmp.
(i) Lmp is a layering of Mmp that satisfies fault independence;
(ii) SLmp = SLmp(D, Mmp, Con0) displays crashlike behavior with respect to every

subset X of its states; and
(iii) for every state x in a layer of SLmp , the set Lmp(x) is potence connected.
Proof. (i) Let R be an Lmp-run. By definition, R consists of an infinite sequence

of layers from Lmp. Since in each layer L of Lmp at least n − 1 processes move, in
an infinite number sequence there can be at most one process that fails to take an
infinite number of steps. It follows that at most one process can be faulty in R. Since a
process that moves receives all of the pending messages sent to it, all messages sent to
nonfaulty processes in R are delivered. It follows that the run R′ that corresponds to R
is admissible. It is, in addition, easy to check that Lmp satisfies fault independence,
since Mmp satisfies no finite failure.

Part (ii) follows from the fact that the environment can halt the operation of an
arbitrary process j at any given state by repeatedly performing layers of the form
[1, 2, . . . , j − 1, j + 1, . . . , n] from that state on.

It remains to show part (iii). First notice that just as in the case of Lrw we have
that

x · [p1, . . . , pn−1] · [pn, p1, . . . , pn−1] = x · [p1, . . . , pn] · [p1, . . . , pn−1],

since in both cases exactly the same actions take place in the same order in the two
layers following x. Lemma 5.1(ii) implies that x · [p1, . . . , pn] ∼p x · [p1, . . . , pn−1], and
it follows that every state of Lmp(x) obtained from x by a layer of the second type is
potence connected to a state obtained by a (full) layer of the first type. Let Xf be
the subset of Lmp(x) consisting of states of the form x � L, where L is a full layer. It
remains to show that Xf is potence connected. Since, by part (ii), SLmp(D) displays
crashlike behavior with respect to Xf , Lemma 5.7 implies that it suffices to show that
the set Xf is similarity connected.

We first claim that, for a full layer L = π of the first type and an index k < n,
we have that

x · π ∼s x · π{k,k+1}.

To see why, recall that according to the environment’s actions in a layer of the types
we are considering, a process that is scheduled first performs its action and then
receives the messages that were sent to it and are still in transit. Thus, the actions
of a process pj in the layer x � π depend only on pj ’s local state in x. It now follows
that every process pi with i �= k +1 performs the same actions and receives the same
messages in the layer following x in both x � π and x � π{k,k+1}. The only process
whose state at the end of the layer may differ in the two cases is pk+1. If pk sends
pk+1 a message, it will be delivered in the first case and will remain in the channel
from pk to pk+1 in the second case. Since the channel from pk to pk+1 is part of the
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pk+1-component of the environment’s state,8 the two states agree modulo pk+1 and
are thus similar. The claim follows.

Finally, we use this last claim to argue as in the shared-memory case. Recall
(proof of Lemma 3.5) that Tr(k, π) is the permutation obtained by transposing the
kth and (k+1)st elements in π. Since the order of the concurrent processes in a layer
of the third type is immaterial and since π{k+1,k} = Tr(k, π){k,k+1} we obtain

x · π ∼s x · π{k,k+1} = x · π{k+1,k} = x · Tr(k, π){k,k+1} ∼s x · Tr(k, π),

and we are done, since any layer of the first type can be transformed into any other
by a sequence of transpositions.

Given Lemma 8.1, we can use Theorem 6.3 which, together with Theorem 5.8
and Lemma 5.2, now yields the following.

Theorem 8.2. No protocol solves the consensus problem in Mmp.
Observe that the layers in a given layering need not be of the same length. Indeed,

we saw both full and nonfull layers being used in the permutation layerings above. In
addition, in the permutation layerings we discussed above each process performed at
most one action in a layer. This was chosen for simplicity. In [32], other variants of
permutation layerings are given in which a process may perform many actions in a
layer.

8.1. A synchronic layering. We now sketch a second type of layering for the
asynchronous models we have considered. This one, which we call the synchronic
layering, imitates the synchronous model and yields layered systems of Mmp whose
runs are very close in structure to those of Mm. We shall describe it for the message-
passing model, and a completely analogous treatment works for the asynchronous
shared memory model sketched in section 3 as well.

The synchronic layering, denoted by Ls, is defined as follows. The layers are
denoted by (j, A) or (j, k) with 1 ≤ j ≤ n and 0 ≤ k ≤ n. In the sequence (j, A), all
processes except j move, and then they all receive whatever outstanding messages are
addressed to them (including messages that have just been sent). The “A” in (j, A)
stands for process j being absent from the layer. In an action of the form (j, k), all n
processes move simultaneously, and then all outstanding messages to the processes
are delivered as before, with one exception: If j’s current action is sendj(', m) and
' ≤ k, then this message remains outstanding and is not delivered. Notice that the
actions (j, 0) are all identical and independent of j; they are written this way for ease
of exposition. We think of j as being the “slow” process in the layer defined by (j, n)
or (j, A).

As with the permutation layering, a layer in the synchronic case contributes suf-
ficiently to the fairness requirements made by the model: At least n− 1 processes get
to move in every layer, and all messages that have been sent by the previous layer to
a process that moves are guaranteed to be delivered by the end of the current layer.
It follows that Ls is a layering of Mmp, and it is easy to check that it satisfies fault
independence. Crashlike behavior is immediate as well. To complete the impossibility
argument, one needs to show that Ls(x) is potence connected. The argument for this
uses elements from the proof for Mm and from the proof in the case of permutation
layerings. For every j and every k < n, the states x � (j, k) and x � (j, k + 1) agree

8This is the place where we make use of the notion of j-component in the definition of similarity.
Intuitively, we expect this will be needed whenever message-passing models are considered, in which
messages can be delayed in the channels for more than one “round.”
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modulo process k +1; they can differ at most in the state of k +1 and of the channel
from j to k +1, which is part of the k +1-component of the state. It follows that the
set of states of the form x � (j, k) is similarity connected, and by Lemma 5.7 this set
is also potence connected.

The argument that all of Ls(x) is potence connected uses the diamond property
that

x � (j, n)� (j, A) = x � (j, A)� (j, 0).

To see why this equality is true, notice that in both x�(j, n) and x�(j, A) no process
receives a message from j in the last round. These messages are sent, based on j’s
local state in x, in the last round of x � (j, n), but are only received in the following
round. In the last round of x�(j, A)�(j, 0) process j sends messages to everyone, and
these messages are all received in that round. Notice, however, that these messages
are sent before j has received any new messages following the state x. Hence, the
messages it sends are again based on j’s local state in x. It follows that the same
messages are sent by j in the last round of x � (j, A)� (j, 0) and in the last round of
x � (j, n). Moreover, in both cases these messages are received in the second round
following x. It follows that x � (j, n)� (j, A) and x � (j, A)� (j, 0) are equal.

9. Conclusions. Roughly speaking, we have seen that invariably, when the pro-
cesses follow a protocol D in a given model M , the environment has a simple best
strategy to delay consensus: Start with a bipotent state and, for as long as possible,
find a layer that will cause a transition from the current bipotent state to a successor
state that is also bipotent. If there exists a layering function L for which L(x) can
be shown to be potence connected for all x, then we obtain impossibility. For lower
bounds the analogy is almost (but not quite) complete.

Interestingly, some of the layering functions for the different models turn out to
be extremely similar. Moreover, we believe that the vast majority of lower bounds
and impossibility results for consensus in the different models can be cast in terms of
such layering functions, with essentially the same proof. We feel that this uniformity
provides new insight into the inherent structure of the consensus problem and helps
pinpoint, in a fairly model-independent way, the reason why consensus is difficult.

Our analysis emphasized and focused on the role of connectivity in the structure
of consensus. Indeed, it is straightforward to convert our proofs of the existence of
a bipotent state to ones that show the following, roughly: For a set X of states and
a layering function L, define L(X) = ∪x∈XL(x). Let X0 = Con0, and inductively
define Xk+1 = L(Xk). The proof of Lemma 5.8 shows that X0 is similarity connected
and potence connected (in the presence of a single failure). For the layering functions
we have been discussing it is not hard to modify our proofs to show that, roughly,
if Xk is potence connected then so is Xk+1. Therefore, we have two possible styles
of proofs. First is the FLP [20] style, which we followed in the paper. The strategy
in this case is to show that there is a bipotent initial state and then find a sequence
of successor bipotent states by proving locally the connectivity of the successors of
a bipotent state. The other, more global, type of proof is closer to the topological
approach of works such as [10, 26, 23, 34] and, in particular, [24]. It shows that each
layer Xk is connected, and since it has at least one 0-potent and one 1-potent state,
then it must have a bipotent state. The connectivity of these sets is essentially a
topological property (although clearly the analysis involves no deep topology). As
long as these sets are connected, Lemma 3.8 guarantees that there is a bipotent state
in the set.
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In this paper we dealt with consensus only, but the connectivity properties we
prove hold for arbitrary decision problems as well, and we pursue this line further
in a sequel paper (as described in [32]), where we show how our work generalizes
the necessary conditions of [8] to other models, perhaps more remarkably to the
synchronous model.

It is often useful to ask what knowledge [17] about the state is required by a
process in order to be able to reach a decision. We note that once the protocol is
fixed, as long as the state is bipotent, even an observer with complete information
about the state cannot determine the final outcome. In a precise sense, no knowledge
about the actual state can help the process decide at that point. Indeed, this has been
formally captured in Lemma 5.3. Once the state ceases to be bipotent (and becomes
“unipotent”), however, information about the state can be of use in determining what
value a process should decide on. In fact, the proof of Lemma 7.4 shows that at the
first instant along a run in which the state ceases to be bipotent in the t-resilient
synchronous case, there are often many processes who have insufficient knowledge
to be able to decide. An additional round is sufficient for providing them with this
knowledge, in which case they can safely decide. In summary, as long as the state is
bipotent, there are “structural” reasons why decisions cannot be taken. After that, the
reasons merely involve disseminating the relevant information to all relevant parties.
In particular, in the (t + 1)-round lower bound (Theorem 7.5), t rounds are paid on
account of topological reasons (the need to disconnect the set of global states), while
an additional round is paid on account of the insufficient knowledge available after t
rounds. A similar phenomena may occur in other topology-related problems, such as
the k-set consensus problem in the synchronous case [14], where the tight lower bound
is �t/k�+ 1 rounds.
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