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1. Introduction 

In this paper, we discuss two closely-related types of agreement that can be reached 
in a distributed system in the presence of undetected processor faults. One type is 
called Simultaneous Byzantine Agreement (SBA) and the other Eventual Byzantine 
Agreement (EBA). Corresponding to these two types of agreement are two distinct 
problems in coordination among multiple processors in a distributed system. One 
problem is synchronization: Processors may be required to perform some action 
at the same time, immediately after reaching agreement on that action [ 181. The 
other is consistency as required, for example, in the atomic commitment of a 
distributed database transaction. The participants in the transaction commit pro- 
tocol must agree on whether or not the transaction is to be committed. In this case, 
it is enough to know that the choice will eventually be the choice of all other parties 
to the agreement [lo]. (Note that the atomic commit problem that implies BA is 
the problem of nonblocking atomic commit with guaranteed communication. In 
this problem, correct participants must reach a decision in spite of the failure of 
any other participants or coordinators and without waiting for the recovery of 
others.) 

It is the purpose of this paper to explore the difference between these two 
problems and the consequent differences in requirements for their solution. Because 
SBA implies EBA within our model, EBA can always be reached as early as SBA. 
We show that EBA can often be reached earlier than SBA. 

The context for our study is a network of n processors that are able to conduct 
synchronized rounds of information exchange, each round consisting of message 
transmission, message receipt and processing. In the following, n will always denote 
the number of processors. We assume that the network is completely connected 
and that only processors can fail. The reader may be interested in exploring models 
with weaker assumptions in the following related references: [2], [4], [lo], [17], 
and [23]. The reader might also like to explore earlier related work in [5], [6], [7], 
[ 141, [ 161, and [ 191. In the Byzantine fault case, no assumption is made about the 
behavior of faulty processors. During an execution of an algorithm, a processor is 
said to be correct if it follows the specifications of the algorithm; otherwise, it is 
said to be faulty. 

We assume that the agreement to be reached concerns a single value that is 
initially given as input to one processor, called the origin. This value is taken from 
a known set of values. All processors are assumed to know when the input is given 
to the origin. Each processor is to give exactly one output value after some number 
of rounds of information exchange with the other participating processors. The 
processors are said to have reached agreement when the following two conditions 
hold: 

(i) all correct processors have given the same value as output, and 
(ii) if the origin is correct, then all correct processors have given the input value 

as output. 

Byzantine agreement was originally defined in [2 I] using these two conditions. We 
call such a state eventual agreement, emphasizing the fact that nothing is assumed 
about the relative times at which the correct processors give their output values. 
We say that the agreement is simultaneous if 

(iii) all correct processors give their outputs at the same round. 

When no assumption is made about the behavior of the faulty processors, we 
modify the term agreement with the adjective Byzantine. Thus, we have the terms 
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eventual Byzantine agreement (EBA) and simultaneous Byzantine agreement 
(SBA). A protocol or algorithm guarantees (Byzantine) agreement in some set of 
executions if, in each execution of the set, all correct processors reach a (Byzantine) 
agreement. 

Note that a processor may give its output in one round and also continue to 
send messages to other processors in that and subsequent rounds. In this case, the 
processor has not finished all rounds of message exchange required by its algorithm 
when it gives its output. A processor is said to have stopped in round r, if it has 
given its output by round r + 1, and otherwise sends no messages in any round 
after r. In an execution of an algorithm for reaching agreement, we count the 
number of rounds between initial input and final stopping of all correct processors 
as the number of rounds required by the algorithm. 

If an algorithm allows its participants to reach Byzantine agreement in every 
execution in which at most t participants are faulty, then the algorithm is said to 
tolerate t faults. In this paper, we investigate the number of rounds required to 
reach agreement as a function of the number of actual faults and the number of 
faults to be tolerated. Suppose A is an algorithm that tolerates n - 2 faults, requiring 
a maximum of k rounds. Let A ’ be the algorithm obtained by modifying A so that, 
no matter what happens, each processor stops after k rounds, the origin always 
gives as output its input value, and each other processor gives as output the value 
A would give, if any, or a default value, otherwise. Inspection of the definition of 
agreement shows that A’ tolerates any number of faults. Hence, we assume 
t < II - 1, unless otherwise indicated. The initial work of Pease et al. [21] showed 
that agreement in the presence of up to t faults could be reached by round t + 1, 
provided the number of processors was sufficiently large. Later, t + 1 was shown 
to be a lower bound on the number of rounds required in the worst case [3, 9, 151. 
A natural question arises from this worst case bound: Can an algorithm for 
agreement be constructed to handle up to t faults so that whenever the number f 
of actual faults is smaller than t, the number of rounds required to reach agreement 
is smaller than t + I? Sections 2 and 3 present lower bounds for this problem. 

First, in Section 2, we generalize a previous result [9] to show that t + 1 is a 
general lower bound for SBA for any f I t. More formally, we show that for any 
protocol that guarantees SBA in the presence of up to t faults, and for any number 
f I t, there exist executions of that protocol with only f actual faults in which 
correct processors send messages to other processors in round t + 1. In particular, 
whenever there are no actual faults, an SBA algorithm must run at least t + 1 
rounds. 

Later, Dwork and Moses extended this bound (first published in [ 121) by studying 
a closely related problem in which each processor has an input [ 131. A function 
from the set of faulty processors to integers that gives the round number at which 
each processor failed is called a pattern. Dwork and Moses give a lower bound on 
the number of rounds required for their problem as a function of the pattern. Their 
bound is easily shown to be a bound for our problem as well by choosing the worst 
pattern. 

The (t + 1)-lower bound-and also that of Dwork and Moses-hold when the 
set of faults to be tolerated is restricted to a very simple type of fault called a crash 
fault. When a processor suffers a crash fault, it sends a subset of messages it is 
specified to send in one round and simply ceases to operate from then on. However, 
Theorem 2.1 even holds if the faulty behavior is further restricted to a class of 
faults called orderly crash faults (defined below). 
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Extending the proof method of Section 2 we show in Section 3 that EBA requires 
at least min(f+ 2, t + 1) rounds. Our proof works only for crash faults and we do 
not know how to prove this result for orderly crash faults. Note that we are talking 
here about the worst case number of rounds required for any execution with only 
ffaulty processors of an EBA protocol that must tolerate t faults. It is important to 
notice the difference between the time at which a processor chooses an output 
value and the time at which it can cease executing the protocol. For many restricted 
fault classes including crash faults, the output value can be obtained by round 
f + 1 using a simple diffusion algorithm, but some processors must continue to 
send messages through roundf+ 2. 

In this paper, we count the number of rounds of information exchange required 
to complete the actions specified by the protocol, not the number of rounds 
required for all correct processors to have produced an output value. Since giving 
its output early cannot help a processor to stop earlier, we assume (for the rest of 
this paper) that a processor saves its output until the round after it last sends a 
message to another processor. This assumption is a notational convenience and is 
made without loss of generality. It is easy to convert any simultaneous agreement 
algorithm to one in which all correct processors stop before they give their outputs 
and outputs are given no later than in the unconverted algorithm. It is easy to 
convert an eventual agreement algorithm so that one round after every correct 
processor knows its output value, every correct processor has stopped. 

In Section 4, we present an algorithm for EBA that achieves our lower bound, 
provided n > max(4t, 2t2 - 2t + 2). This algorithm does not depend on any 
authentication protocol. It requires min(f+ 2, t + 1) rounds to reach EBA using a 
polynomial (in both n and t ) number of bits of information exchange. Previous 
early stopping EBA algorithms did not achieve the lower bound but did work for 
12 > 3t. We refer the reader to our previous work [8], that of Toueg et al. [24], and 
that of Coan [ 11. 

In the remainder of this section, we present the model for execution of an 
agreement algorithm that is used in both our lower-bound proofs and in the 
presentation of our algorithm. The model we present here is similar to the one 
previously given by Dolev and Strong [ 111. The formal framework represents a 
round of an execution as a directed graph with labeled edges and nodes as follows. 

Let I’ denote a set of possible values (including the values 0 and 1) and let MSG 
denote a set of possible messages. A history is an infinite sequence of rounds. Each 
round consists of a directed labeled graph with nodes corresponding to a set P of II 
participating processors, together with special source and sink nodes (that are not 
in P). There is an edge corresponding to every ordered pair of nodes. Each edge is 
labeled by an element of MSG (the message sent), an element of V (a value), or an 
empty label (indicating no message). For notational convenience, each history 
begins with round 0, in which the edge coming from the source outside P to the 
origin is labeled with the input value from V. All other edges have the empty label 
at round 0. At any subsequent round, any node may have the edge from it to the 
sink node outside P labeled with its output value. During this round and subse- 
quently all other edges from this node, carry the empty label. If node p has such 
an edge to the sink at round k, then p has stopped (information exchange) at round 
k - 1, and its output value is the value on the edge to the sink. 

Messages (labels) on edges directed toward p in round k are said to be received 
by p at round k. Likewise, messages on edges directed from p in round k are said 
to be sent by p at round k. If H is a history we write pH for the view of H according 
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to p, which consists of the sequence of subgraphs of the rounds of H that have all 
the labeled nodes but only the edges that are adjacent to p. We also write Hk and 
pHk for the initial sequence of H from its beginning through round k and its view 
according to p, respectively. 

A protocol (or algorithm) A takes as input an initial subsequence of a view of a 
history according to a processor and produces an ordered set of labeled edges 
directed from that processor for the next round. Let U(A, t) be the set of all 
histories on a fixed set of processors in which all correct processors follow A and 
in which at most t processors fail to follow A. (In each section, we restrict U(A, t) 
to histories that have only failures of certain types. Also, we write U for 
U(A, t) when the arguments A and t are clear from the context.) 

A t resilient agreement algorithm is an algorithm A such that in each history of 
U(A, t), each correct processor stops in some round and the processors reach 
agreement ((i) and (ii) above). 

Note that a history includes the names of the processors, and the view of a 
history according to one processor is assumed to include the names of all its 
neighbors (in the completely connected network), whether they have sent it 
messages or not. Thus, an agreement algorithm need not be uniform: the actions 
it prescribes can depend on the name of the processor acting and on the names of 
its targets. 

2. The Lower Bound for SBA 

In Sections 2 and 3, we restrict attention to histories in which the only way a 
processor can fail to follow its algorithm is to fail to send some or all of its 
prescribed messages in one round and remain silent thereafter. This is the notion 
of a crash failure defined above. This notion is a close relative of the notion of a 
“fail-stop processor” [22]. Note that in the round in which a processor has a crash 
failure, it may send any subset of the messages specified to be sent at that round. 
It does not send any message at any subsequent round. 

In proving the lower bound in this section, we further restrict the failure mode 
to order& crash failures in which failing processors must respect the order specified 
by the protocol in sending messages to neighbors. (Recall that for each round a 
protocol produces an ordered set of labeled outedges that we identify with messages 
to be sent.) If a processor fails to send a specified message, it must also fail to send 
any message specified to be sent after that message in the protocol ordering. 

A processor fails during the first round in which it does not send all messages 
required by algorithm A. A processor that fails in round r, sends no messages in 
each succeeding round. 

Our lower-bound proofs are based on establishing certain equivalences among 
histories. The following definitions are crucial in following the proofs. Let A be an 
agreement algorithm that guarantees SBA in the presence of at most t orderly crash 
faults. Let P be a fixed set of n processors. Recall that U(A, t) is the set of histories 
with only orderly crash faults in which algorithm A is employed by all correct 
processors, and the number of faulty processors does not exceed t. We introduce 
two equivalence relations on the set U(A, t ). These equivalences are also defined 
for the set of k round initial sequences of such histories, for any k. 

The first is witness equivalence. For k round initial sequences, this is the transitive 
closure of the relation that holds between Hk and Jk when for some processor p 
correct in both, pHk = pJk. Histories H and J are witness equivalent if their k 
round initial sequences are witness equivalent for every k. In other words, witness 
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equivalence (through round k) is the transitive closure of the relation that holds 
between two histories if there is a processor correct in both that cannot distinguish 
between the two (through round k). 

The second is output equivalence. Here, we take the transitive closure of the 
relation that holds between H and J (or Hk and Jk) when some processor correct 
in both gives the same output value in both. 

A history H is said to be serial if 

(I) Hisin U, 
(2) for each positive integer k, k 5 t, the number of processors exhibiting faulty 

behavior in Hk does not exceed k, and 
(3) no processor fails after round t. 

Note that each history of U in which there are no faults is a serial history. Recall 
that a pattern (for a history) is a function from the set of faulty processors to 
integers that gives the round number at which each processor failed. We call one 
pattern a subpattern of another if the corresponding history for the first pattern has 
as faulty processors only a subset of that of the second and the first pattern is the 
corresponding restriction of the second. If a history H in U has a pattern of failures 
that is a subpattern of that of a serial history, then H is also a serial history. 

If Hk is an initial sequence of a history in U, then the conservative extension of 
Hk is the unique history H’ in U such that 

(1) H; = Hk, and 
(2) no processor fails after round k. 

Given a processor p in a history H in U, the silencing of p at round k of H is the 
unique history H’ (not necessarily in U) such that 

(1) Hi = Hk except that p sends no messages in round k of H’, 
(2) no processor (except possibly p) fails after round k, 
(3) p sends no messages after round k. 

Its uniqueness is guaranteed because conditions (1) and (3) completely determine 
the behavior ofp. For the remaining processors, observe that (2) forces all processors 
that are correct in Hk to follow A in all subsequent rounds and processors faulty 
by round k cannot send any messages after round k (we have restricted to crash 
failures). If history H has processors other than p that fail after round k, then H’ 
resembles the conservative extension of Hk on those processors because they do 
not fail in H’. However, the silencing of p at k is not necessarily the conservative 
extension of its k round initial sequence because A may not call for p to send any 
messages in round k, but it might call for p to send messages later. Since we want 
p to remain silent from round k on, we must allow for the possibility that p fails 
in some round after round k. Note that if adding p to the set of faulty processors 
of H does not raise its cardinality above t, then the silencing of p at round k of H 
is in U. 

A processor p is said to be a candidate in round i of a history H if p does not fail 
before round i and if both H and the silencing of p at round i of H are serial. Note 
that if p fails in round i of serial history H, then p is a candidate in round i of H. 
However, p can be both correct in H and a candidate in round i of H. 

THEOREM 2.1. If agreement algorithm A guarantees SBA for each history with 
at most t orderly crash faults, then A requires at least min(n - 1, t + 1) rounds to 
reach SBA in any serial history. 
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PROOF. We base the proof on a sequence of lemmas that contains ideas from 
several previous related proofs [8, 1 I, 121. Suppose for the rest of this section that 
algorithm A guarantees SBA for each history with at most t orderly crash faults. 
Assume that there is a serial history H in which A reaches SBA in fewer than 
min(n - 1, t + 1) rounds. If t > n - 2, then A guarantees SBA for each history 
with at most t ’ = n - 2 orderly crash faults and A reaches SBA in H in fewer than 
y1 - 1 = t ’ + 1 rounds. Thus, a counterexample with t > n - 2 would provide a 
counterexample with t ’ = n - 2. Hence, we assume (without loss of generality) 
that IZ is at least t + 2. 

LEMMA 2.2. Let H and J be histories in U. If A uses k rounds to reach SBA in 
J and Hk is witness equivalent to Jk, then A uses k rounds to reach SBA in H, and 
H and J are output equivalent. 

The following straightforward, but long proof is supplied for completeness. The 
technical details would better be left as an exercise to the reader. 

PROOF. Recall that witness equivalence is the transitive closure of the relation 
that holds between two histories when there is a processor correct in both and with 
the same view in both. If pH = pJ and p is correct in both histories, then we call p 
a witness to the equivalence of H and J. Since witness equivalence is the transitive 
closure of the relation that holds where there is a witness, any two witness-equivalent 
histories are related as follows: If H and J are witness equivalent, then there exist 
linitesequences(H(i)]l si<m)and(p(i)] 1 cism- l)suchthatH(l)=H, 
H(m) = J, and p(i) is a witness to the equivalence of H(i) and H(i + I), for each 
i with I 5 i 5 m - 1. We say that H is witness equivalent to J via the sequence 
{p(i) ] 1 5 i 5 m - 1) of witnesses. This discussion applies equally to witness 
equivalence as a relation on initial sequences of histories. 

The proof is a straightforward induction on w, the length of a sequence W of 
witnesses such that Hk is witness equivalent to Jk via W. 

First, let w = 1, and let p be the witness. Let v be the output value that algorithm 
A specifies for p in J. Since A uses k rounds to reach SBA in J, v is determined by 
pJk. Since the agreement in J is simultaneous, all correct processors stop at round 
k in J. Thus, no correct processor sends any message to other processors at round 
k + 1 of J. Processors correct through k + 1, just give their output at that round. 

Since witness equivalence of Jk and Hk does not give any condition on the 
correctness of the witness p in later rounds, one cannot simply compare J and H 
(p may become faulty in round k + 1 when it is supposed to give its output). 
Instead, let J’ be the history that is identical to J except that, if p does not remain 
correct in J at round k + 1, then in J’ p correctly gives its output v in round 
k + 1. Obviously, Jk and JL are witness equivalent, since they are identical. The 
assumption n > t + 1, implies that there is some q # p that remains correct in J. 
History J’ is in U and qJ’ = qJ for any correct q in J with q # p. Since A uses k 
rounds to reach SBA in J, q gives its output in round k + 1 of J. Since qJ = qJ’, q 
gives the same output in round k + 1 of J’. Thus, J and J’ are output equivalent. 
Because J’ is in U, A is guaranteed to reach SBA in J’. Thus, all correct processors 
give the same output v in round k + 1 of J’. 

Similarly, we define H’ identical to H, except that p remains correct in H’ 
through round k + 1. Since by assumption Jk and Hk are witness equivalent, so are 
J; and H; . Therefore, as in JL, p in Hd gives output v in round k + 1. Since H’ 
is in U, the argument above shows that all correct processors in H’, give output v 
in round k + 1, and that H’ is output equivalent to H. Since p is correct in both 
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H’ and J’, we conclude that H’ and J’ are output equivalent. Since n > t + 1, 
there is some processor q’ # p that remains correct in H. Since q’ H’ = q’ H, q’ 
gives output v in round k + 1 of H. Since His in U, A reaches SBA in H. Thus, all 
correct processors give output v at round k + 1 of H. This completes the proof of 
Lemma 2.2 for w = 1. 

Suppose we have proved the lemma for witness equivalence via sequences with 
lengths at most w; and suppose that Hk and Jk are witness equivalent via a sequence 
of w + 1 witnesses. Then there is a history Kin U such that Kk is witness equivalent 
to Jk via a sequence of w witnesses and Hk is witness equivalent to Kk via 1 witness. 
By the induction hypothesis, J and K are output equivalent and A uses k rounds 
to reach SBA in K. Also by the induction hypothesis, H and K are output equiva- 
lent and A uses k rounds to reach SBA in H. This completes the proof of 
Lemma 2.2 Cl 

In the rest of the proof, we show how to alter serial histories in a way that 
preserves witness equivalence, but changes the number of faults and the place of 
their occurrence. In any history H of U in which p fails to follow algorithm A, 
there is a first message specified by A that p fails to send. Also in any round of H 
in U in which p sends any messages, there is a last message sent by p (in the order 
specified by A). We call an outedge e of p in a round of a history H significant if 
algorithm A specifies a message to travel over that edge and this message is either 
the last message sent by p in this round of the history or the first message specified 
by A in the entire history that p fails to send. Since we consider only orderly crash 
faults, the message on any significant edge is either correct or absent but not both. 
We show how to alter the states of messages on selected edges from absent to 
correct, or vice versa, producing witness equivalent initial sequences of histories 
and eventually producing a desired result. In particular, we are able to correct any 
faulty processor or cause any processor to fail in any round that does not violate 
the requirement that the resulting history be serial. 

LEMMA 2.3. If e is a significant outedge of a candidate p in round k 5 t of a 
serial history H, then there is a serial history J such that J, is witness equivalent to 
H, and Jk is identical to Hk except that the state of the message at e is altered (from 
correct to absent or vice versa). 

PROOF. First note that if e is a significant outedge of a candidate p in round k 
of history H in U, then the operation of altering the state of the message on e in 
Hk and then taking the conservative extension of the altered initial sequence 
produces a serial history J. This is true because, by definition S, the silencing of p 
at round k of H, is serial and the pattern of J is a subpattern of the pattern of S. 
All processors other than p are either correct in both histories or faulty in both. If 
p is correct in H until round k, then k becomes faulty both in J and S at that 
round; otherwise, p has to become faulty in H in round k by not sending the 
appropriate message on e. In that case, p in S becomes faulty in S at round k, too. 
Either the same is also true for J or by adding a message to e, p now behaves 
correct in round k. Since J gets extended conservatively after that round in this 
case, p never gets faulty. 

Let e be a significant outedge of candidate p in round k in history H in U. We 
prove the lemma by induction on t - k. 

In case t - k = 0, in the initial subsequence H, we simply alter e and take the 
conservative extension, producing a history J in U identical to H through round 
k = t, except for e. Since p is a candidate, J is serial. Note that, except possibly in 
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p, the correct processors in H and J are the same. Since n > t + 1 and there are at 
most t faulty processors, there is at least one processor q such that q is not the 
target of e and q is correct in both histories. Now qH, = qJ, so H, and J, are witness 
equivalent. This completes the proof for t - k = 0. 

Now assume the lemma holds for all rounds r with (t - r) < (t - k). Let e be a 
significant outedge of candidate p in round k of history H in U and assume 
k < r 5 t. We next show how to correct all the processors that fail in rounds 
k+ 1 totofH. 

Let q be any processor that fails in round r of serial history K in U. Then q is a 
candidate in round r of K. By successive application of the induction hypothesis to 
significant outedges of q with missing messages, there is a serial history L such that 
L, is identical to K, except for outedges of q in round r, L, is a witness equivalent 
to K,, and q is correct in L,. Let L’ be the conservative extension of L, . Then L’ 
is a serial history with Z,: witness equivalent to K,, LL identical to K, except for 
outedges of q in round r, and q correct throughout L’. Thus, by successive 
application of this principle to processors that fail after round k in H, there is a 
serial history A4 in U such that M, is witness equivalent to H1 and A4 is the 
conservative extension of Hk. 

Since k < t and M has no failures after round k, any processor correct in A4 is a 
candidate in round k + 1 of M. Let q be the target of e. If q fails in some round of 
A4 and N is the conservative extension of Hk with e altered, then for any correct 
q’ # p in M, q’A4 = q’N, so A4 and N are witness equivalent and N is the desired 
history. Otherwise, assume q is correct in M. By successive application of the 
induction hypothesis to any significant outedges from q in rounds from k + 1 to t 
of M, there is a serial history G such that G, is witness equivalent to M, , Gk+, is 
identical to Mk+, except for outedges of q in round k + 1, and q sends no messages 
in rounds from k + 1 to t of G. If p fails in round k of H, then p sends no messages 
after round k of G, so altering the state of the message on the edge from a to k in 
round k of G produces the desired history. 

The case left to check is the one in which p does not fail in round k of H. In this 
case, p does not fail in round k of G and G k+, has at most k faulty processors 
including q. Thus, p is a candidate in round k + 1 of G. 

By successive application of the induction hypothesis to any significant outedges 
of p in rounds from k + 1 to t of G, there is a serial history Fin U that is witness 
equivalent to G through round t, identical to G through round k, and has no 
messages from p or q in rounds from k + 1 to t. Let E be the conservative extension 
of the result of altering the state of the message on edge e (the edge from p to q) in 
round k of F, . The only possible changes to the pattern of F are moving the failure 
of p as early as round k and the failure of q as early as round k + 1. We have 
already established that this pattern is that of serial history so E is serial. Since 
n > t, there is a processor q’ other than p or q correct in both E and F. For such a 
processor, q’ El = q’F( , so E, is witness equivalent to Ft. Finally, Ek is identical to 
Hk except for the state of the message on e. Thus, E is the desired history. This 
completes the proof of the lemma. Cl 

LEMMA 2.4. If H and J are serial histories, then H, is witness equivalent to J, . 

PROOF. Let H be a serial history. By successive applications of Lemma 2.3 to 
significant outedges with missing messages from faulty processors of H, there is a 
serial history H’ such that H,’ is witness equivalent to H, and H’ has no faulty 
processors. By successive applications of Lemma 2.3 to significant outedges of the 
origin in round 1 of H’, H: is witness equivalent to Nt where N is the silencing of 
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the origin in round 1. Likewise, any other serial history J is witness equivalent 
through round t to N,. q 

To finish the proof of Theorem 2.1, consider the assumed history H, in which A 
reaches SBA in t or fewer rounds. Let v be the output value of the correct processors 
in H, let v’ be a value different from v, and let J be the fault free (serial) history 
with input v’. By the agreement condition, all processors have to output v’ in J. 
On the other hand, by Lemma 2.4, H, and JI are witness equivalent. By 
Lemma 2.2, H and J are output equivalent. This means that in J all processors 
had to output v, a contradiction. 0 

COROLLARY 2.5. Algorithm A requires at least min(n - 1, t + 1) rounds to reach 
SBA when there are actually no faults. 

3. A Lower Bound for EBA 

Next, we consider the question of early stopping for EBA and prove a lower bound 
similar to, though stronger than, the one in [ 111. In this section, we restrict attention 
to histories in which all failures are crash failures. Let A be a t-resilient agreement 
algorithm that is supposed to guarantee EBA in U(A, t ). Note that U(A, t ) has a 
different definition in this section: faults in histories of U(A, t ) may be crash faults 
rather than the orderly crash faults of Section 2. When we refer to a conservative 
extension in this section, we mean a history defined as in the previous section but 
with respect to the current U. 

An edge e in round k of history H is critical if there is a history J in U such that 

( 1) J is not output equivalent to H, 
(2) J is identical to H through round k except for edge e, and 
(3) J is the conservative extension of Jk. 

In other words, an edge is critical if altering the state of its message and taking 
the conservative extension alters the output value of correct processors. Note that 
A must specify a message for any critical edge. 

For this section, we require versions of the notions of serial and candidate that 
are parameterized by J A history H is said to be f-serial if H is in U, H has no 
more than f faults, for each positive integer k 5 f + 1, the number of processors 
exhibiting faulty behavior in Hk does not exceed k, and no processor fails in H 
after round f+ 1. A processor p is said to be an f-candidate in round i of history 
H if p does not fail before round i, and if both H and the silencing of p in round i 
of H are f-serial. 

THEOREM 3.1. Let A be an agreement algorithm that reaches EBA in histories 
of U(A, t ). Then there is a history in U(A, t ) with only ffaults in which A requires 
at least min(r2 - 1, t + 1, f + 2) rounds to reach EBA. 

PROOF. As we argued in the proof of Theorem 2.1, a counterexample with 
t > n - 2 would provide a counterexample with t = n - 2. Thus, we assume 
(without loss of generality) that t < n - 1. Suppose that algorithm A reaches EBA 
within min(t, f + 1) rounds in every history of U with at most f faults. 

First, we give a straightforward derivation of a contradiction in the case f = 0. 
Assume A is a t-resilient agreement algorithm that uses only min(t, 1) rounds to 
reach EBA in any history of U with no faults. If t = 0, then processors send no 
messages to other processors; otherwise, when there are no faults, processors send 
messages to other processors only in round 1 and all processors give the input 
value as output in round 2. Let HO be the preliminary round that gives input 0 to 
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the origin and let H be its conservative extension. Each correct processor of H 
must give output 0 in round min(t + 1, 2). Let K0 be the preliminary round that 
gives input 1 to the origin and let K be its conservative extension. Each correct 
processor of K must give output 1 in round min(t + 1,2). In at least one of H and 
K the origin must send at least one message in round 1, for otherwise any processor 
except the origin would have identical views in the two histories. Thus, t must be 
greater than 0. Without loss of generality, assume that the origin sends a message 
to processor p in round 1 of H. 

Let Jr be identical to H, except that the origin fails in Jr after sending only its 
message to p and let J be the conservative extension of J, . (If the origin sends only 
one message in round 1 of H, then let J = H.) Then, J has at most one crash fault 
and is a history in U. Now pHI = pJ, so p gives output 0 in round 2 of both H and 
J. Thus, any correct processor in J must eventually give output 0. Since t > 0 and 
y1 - 1 > t, we have n > 2. Hence, there is a processor q that is neither the origin 
nor p. If the origin sent no message to q in round 1 of K, then we would have 
qK, = qJ,. But q gives output 1 in round 2 of K and q gives output 0 in some 
round of J. Therefore, the origin must send a message to q in round 1 of K. 
Let L, be identical to K, except that the origin fails in round 1 by sending only its 
message to p (if any), and let L be the conservative extension of L,. Then L has 
one crash fault and is a history in U. Since pK, = pL,, p gives output 1 in round 2 
of K and L, so any correct processor of L must eventually give output 1. Since p 
sends no messages to other processors after round 1 in any of the histories H, J, K, 
and L, we have qJ = qL. But this contradicts the fact that q must output 0 in J 
and 1 in L. 

Now we assume f 2 1. Since we assume y1- 1 > t, there are at least two correct 
processors in any history of U. In any history of U with at mostffaults, there can 
be no critical edge in round min(t, f + l), because all correct processors have 
stopped by round min(t, f + 1) (giving their outputs by min(t + 1, f + 2)) and 
changing a value over any single edge cannot affect the output of more than a 
single correct processor. We first show that in anyf-serial history, there is no critical 
edge in roundffrom a processor that is anf-candidate in roundf: Then, we show 
that allf-serial histories, including all histories with no faults, are output equivalent. 
As in the proof of Theorem 2.1, we then argue that histories with distinct inputs 
and no faults must have the same outputs, contradicting part (ii) of the definition 
of agreement. This contradiction will complete the proof. Cl 

LEMMA 3.2. Let H be an f-serial history. Then there is no critical edge in round 
ffrom a processor that is an f-candidate in round f of H. 

PROOF. We argued above that there could be no critical edge in round 
min(t, f + 1); so we can assume, without loss of generality, that f c t. Suppose there 
were a critical edge e in round f from a processor p that is an f-candidate in round 
f: Let q be the target of e. Let J be the conservative extension of the result of 
altering e in Hf. By the definition of critical edge, J is not output equivalent to H. 
Since p is an f-candidate in round f of H, and since H is f-serial, J isf-serial. Thus, 
J has no more than f faults and J is in U. Since we have assumed A reaches EBA 
within min(t, f + 1) rounds in every history of U with at most f faults, J reaches 
EBA by round f + 1. 

Since f + 3 I t + 2 5 n, we can find processors r and s correct in both H and J 
and not equal to q. Let H’ be the conservative extension of the result of removing 
any message from q to r in round f + 1 of H I+, . Let J’ be the conservative extension 
of the result of removing any message from q to r in round f + 1 of Jf+, . Now H’ 
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and J’ each have at most t faults so that Algorithm A eventually reaches EBA in 
both. But each correct processor except r has the same view in H’ as in H through 
f+ 1 and is stopped at f+ 1. By the view of s, SHY+, = sH/+, and therefore H and 
H’ are output equivalent. Since H’ is a conservative extension of anf+ 1 round 
initial sequence, no processor fails after round f + 1 and no processor except r 
sends a message to another processor after round f + 1. Likewise, each correct 
processor except r has the same view in J’ as in J through f + 1 and is stopped by 
f+ 1. Since sJ/t-, = sJf:, , J and J’ are output equivalent. Since J’ is a conservative 
extension of an f + 1 round initial sequence, no processor fails after round J + 1 
and no processor except r sends a message to another processor after round f + 1. 
Thus, rH’ = rJ’ and r must have the same output value in both, contradicting the 
assumption that H is not output equivalent to J. Cl 

LEMMA 3.3. If A reaches EBA for all histories with at most t faults and if A 
reaches EBA within min(t, f + 1) rounds for all histories with at most t faults, then 
all f-serial histories are output equivalent. 

PROOF. Here we use the proof technique developed for Theorem 2.1. First, we 
show that if e is an outedge of an f-candidate p in round k 5 min(t, f + 1) of 
f-serial history H, and if A specifies a message for e, then there is an f-serial history 
J output equivalent to H and identical to H through round k, except that the state 
of the message at e is altered (from correct to absent or vice versa). As in the proof 
of Lemma 2.3, this is proved by induction onf+ 1 - k. Note that if e, H, and k 
are as above, then the conservative extension of the result of altering the state of 
the message on e in round k of Hk is an f-serial history and satisfies all requirements 
for J unless e is critical. 

First, assume f + 1 - k = 0, that is, k = f+ 1. Let e be as above in round f+ 1 
off-serial history H. Since there are no critical edges in roundf+ 1, the appropriate 
conservative extension is the desired output equivalent history. 

Next assume f + 1 - k = 1, that is, k = f: Again the appropriate conservative 
extension is the desired output equivalent history by Lemma 3.2. 

Finally, assume that we can obtain the desired output equivalent history for such 
edges in rounds r with r > k and assume k < 1: By successive application of the 
induction hypothesis to outedges from processors that fail in rounds after round k, 
we can obtain anf-serial history K that is output equivalent to H such that K is the 
conservative extension of Hk, Since k cfand K is f-serial, any correct processor of 
K is an f-candidate in round k + 1 of K. Now either the target q of e fails by round 
k or it is correct in K. If it is correct in K, then the silencing of q in round k + 1 of 
K is also f-serial and can be shown to be output equivalent to K by successive 
applications of the induction hypothesis to the outedges of q. Thus, in any case 
there is an f-serial history K’ that is identical to H through round k, is output 
equivalent to H, and has no messages from q after round k. Let J be the conservative 
extension of the result of altering the state of the message on e in K;. Then, J is 
output equivalent to K’ because rJ = rK’ for any correct r in both J and K’ and 
some such r exists because the source of e is the only possible additional fault in J 
over those in K’. Thus, J is the desired f-serial history output equivalent to H and 
identical to H through round k except for the state of the message on e. 

The output equivalence of all&serial histories follows easily by application of a 
proof analogous to that of Lemma 2.4. Let H be the f-serial history with input 0 
and no faults. Let J be the f-serial history with input 1 and no faults. We have 
shown that H and J must be output equivalent, contradicting part (ii) of the 
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definition of agreement, Thus, A cannot reach EBA within min(t, f + 1) 
rounds in every history of U with at most Jfaults. This completes the proof of 
Theorem 3.1. Cl 

4. An EBA Algorithm 

In this section, we describe an algorithm for eventual Byzantine agreement that 
achieves the lower bounds of the previous sections, provided that 12 is sufficiently 
larger than t. The algorithm will tolerate up to t Byzantine faults. (We no longer 
restrict attention to crash faults.) The key to understanding this algorithm is the 
notion of separation, which will be described more formally below. Informally, 
when a faulty processor sends different information to two subsets of correct 
processors, it separates one set from another. The algorithm keeps track of two 
rounds of information exchange at a time, so a fault that separates large enough 
sets of correct processors from each other in one round will be discovered by all 
correct processors in the next round. In order to avoid discovery by all correct 
processors, a fault may only separate from others a set of the size of the number of 
unknown potential faults that must be tolerated. Thus, t faults cannot separate 
more than t ’ correct processors from other correct processors without at least one 
of them being discovered. The idea behind the algorithm is that when n is larger 
than max(4t, 2t * - 2t + 2), our algorithm will allow correct processors to obtain 
the agreement value at the end of any round in which no fault gives itself away 
and to stop within one additional round. 

Recall that we count only the rounds of information exchange among the 
processors. The preliminary input and final output rounds are only used to simplify 
the description of the algorithm. 

We use the following notation: 

P denotes the set of names of participating processors, 
s the name of the origin, 
X a symbol not in P and 
V the set of possible input values. 
Let 0 be an element of V, let * a special value not in V (representing “undefined”), 

and let I/’ be the union of V and 1 * 1. 

To run the algorithm, each processor maintains a data structure consisting of 
two types of variables: variables containing values from the set V’, and variables 
containing sets of processor names. For each of the strings s, ps, and pqs, where p 
and q run over all the elements of P, we associate a variable of the first type. The 
values stored in these variables will be interpreted as representing information 
received from the appropriate processors. Thus, for example, the value stored in s 
will be interpreted as the value sent by the origin of the agreement. The value 
stored in qs will be interpreted as the value q said that s sent to it. Finally, the value 
stored in pqs will be interpreted as the value p said that q said that s sent to it. 
Notice that s denotes both the origin and the variable associated with it. The 
pseudocode of the algorithm uses s only as a variable and not as a name for the 
origin. 

With the string X and with strings pX, for every p in P, we associate a variable 
of the second type. Values stored in strings ending in X will be interpreted as 
representing information received from the processors about faults. Thus, the set 
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stored in X will be a set of processors known to be faulty. The set stored in qX will 
be the set of processors q claims to be faulty. 

We refer to the variables as strings. 

Strings ending in s will be initialized to value 0. 
Strings ending in X will all be initialized to the empty set. 

We use the following convention for naming sets of strings: 

Let Q be any subset of P, let p be in P, and let R be any name for a set according 
to this convention. Then 

Qs= {qslqisin Q), 
QX= {qX(qisin Ql, 
pR = (pr 1 r is in R), and 
QR = 1 qr 1 q is in Q and r is in R). 

Thus, for example, Ps is the set of strings of length 2 that end with s, and pPs is 
the set of strings of length 3 that begin with p and end with s. 

Here, we introduce a simple one round process that is the heart of many 
agreement algorithms. We give this process the name ROUND. Each processor 
executes ROUND during every round from round 3 until it stops. We also 
introduce a variant of ROUND called ROUND2 that is executed in round 2 and 
collects the original information in Ps. ROUND has two functions: (1) to exchange 
information on Ps with all other processors to produce values for PPs that are then 
reduced to values for Ps; and (2) to exchange information on X with all other 
processors to produce values for PX and to use PPs and PX to discover faults. It is 
expected to operate synchronously with all participating processors sending infor- 
mation to all and then receiving information from all. If two processors are correct, 
it is assumed that their information is correctly exchanged. It uses two auxiliary 
processors, DETECT and REDUCE, which are defined below. We assume that a 
processors sends messages to itself and processes them as part of all the messages 
it receives. 

Note that in ROUND2 each processor sends the value it has stored in s and 
receives the corresponding values from all processors. It stores the value received 
from processor p in ps. Thus, ROUND2 has the instruction “RECEIVE ps from 
each p in P.” 

The action of each participating processor executing ROUND2 is as follows: 

ROUND2: /* for round 2 */ 
begin; 

SEND s to all processors; 
RECEIVE ps from each p in P; 

if ps is not received from p then set ps := s) 
if Ps does not contain at least n - t identical values then put the origin in X; 

end ROUND2. 

Note that in ROUND each processor sends the values it has stored in Ps and X 
to all processors and then receives corresponding values from every processor. The 
values received for Ps and X from processor p are stored in pPs and pX, respectively. 
Thus, ROUND has the instruction, “RECEIVE pPs, pX from each p in P.” 
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The action of each participating processor executing ROUND is as follows: 

ROUND: /* for rounds after round 2 * / 
begin; 

SEND Ps, X to all processors; 
RECEIVE pPs, pX from each p in P; 

(if p is already in X 
then default its values for pPs to 0) 

(if p is not already in X but it does not send pPs and pX 
then for each q in P set pqs : = * and leave pX unchanged) 

DETECT; 
for each p and q in P if pqs = * then set pqs : = s; 
REDUCE; 

end ROUND. 

A correct processor may put the name of the origin in X during the execution of 
ROUND2, but only if Ps does not contain y1- t identical values so that the origin 
must be faulty. In later rounds, the process DETECT is the only way correct 
processors add names to the set of known faulty processors kept in X. DETECT is 
designed so that correct processors will never add names of correct processors to 
X, and therefore, at any time the largest possible number of faulty processors that 
a given correct processors has not discovered is t - 1 X 1. 

Since correct processors may stop at different times-the difference can be at 
most one round as will be seen later-one has to take care that a correct processor 
that has already stopped and therefore does not send messages anymore is not 
considered to be faulty. This is achieved by first setting variables pqs for which no 
value from p has been received to the undefined value “*“. Ifp is not found faulty 
by DETECT, then pqs will later be set to the actual value of s. 

If more than t - 1 X 1 processors claim that they have put processor q in their set 
of known faulty processors, then any correct processor can safely put q in X (some 
other correct processor put q in its X first). 

In our algorithm, correct processors send identical data to all participants. A 
property that will be preserved by REDUCE is that if p, q, and r are correct 
processors, then the values stored in pqs and rqs by any correct processor will be 
identical. Thus, if the multiset of values stored in (P - X)qs does not have at least 
y1- t identical values, then q must be faulty. 

The action of each participating processor executing DETECT is as follows: 

DETECT: 
begin; 

for each q in P - X; 
if({pIpisinP-XandqisinpX)I>t-IX1 

or P - X contains two sets A and B each of cardinality 2 t 
such that Aqs and Bqs both have only values in V, 
but no value occurs in both Aqs and Bqs 

then add q to X and default the values of qPs to 0; 
end for each q ; 

end DETECT. 

The process REDUCE uses values of PPs to update the values of Ps using a 
majority vote. Let g be the smallest integer greater than n/2. In order to obtain the 
new value for string ps, a majority vote is taken over the values of the strings pPs. 
Note that all these values are obtained directly from p. There is no voting by others 
here on what p said as it is done by DETECT for q. If p is correct, then it sends 
the same data (Ps) to each participant; all correct participants will have the same 
value for ps after REDUCE. These values ps determine the further action to be 
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taken by each processor. If correct processors all have the same set Ps, then they 
behave identically and reach agreement very quickly. 

The action of each participating processor executing REDUCE is as follows: 

REDUCE: 
begin; 

for each p in P; 
if pPs has at least g strings with value v 

then ps := v 
else ps := 0; 

end for each p; 
end REDUCE. 

For the remainder of this section, we assume that 

n > max(4t, 2(t + (t - I)‘)), 

so that the following properties are true of the majority threshold g: 

(1) a> n; 
(2) n-2trg; 
(3) n-t-(t- l)%g. 

We use these properties of g to show that undetected faults cannot cause correct 
processors to reach different values for S. 

The algorithm will be called EAGREE. It takes a value as input in round 0. Only 
the origin is given a value. If no value is received, the string s is left with its initial 
value 0. We use the existence of a value other than 0 stored in s in round 0 to 
indicate that the processor executing the code is the origin. All processors execute 
the same code. If a processor has a value other than 0 stored in s at the end of 
round 0, then it sends that value to all processors in round 1. We assume that no 
processor except the origin can have a value stored in s other than 0. If the input 
value is 0, the origin acts just like the other participants and sends nothing. 
Receiving nothing from the origin in the first round is interpreted as receiving 0 
from the origin. This is just a convenience, all processors know the name (s) of the 
origin. This simply allows us to write EAGREE in a uniform way without 
mentioning explicitly the name of the processor executing the code. Correct 
processors ignore any values received from processors other than the origin in 
round 1. Correct processors using EAGREE reach EBA by round min(f+ 2, t + 
1). At the end of the algorithm, the variable s at each correct processor will hold 
the output value. Note that round 0 and the output round involve no information 
exchange among the processors and are not counted when we discuss the number 
of rounds required to reach agreement. 

The action of each participating processor executing EAGREE is as follows: 

EAGREE: 
begin; 
i := 0. /* round O--the input round */ 

REi=EIVE s AS INPUT; 
(if nothing is received, leave s unchanged) 

i:= 1; /* round 1 */ 
ifs # 0 then SEND s to all processors; 
RECEIVE s; 

(if nothing is received from the origin, leave s unchanged) 
doi:=2tof+ 1; 

if i = 2 then ROUND2 else ROUND; 
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if Ps has at least g identical values v 
thens:= v; 
elses:=O; 

if Ps has at least n - t identical values 
then leave this do loop; 

end do; 
i:=i+l; /* output round for this processor */ 

OUTPUT s; 
end EAGREE. 

Recall that 2g > n so that this algorithm is well defined. 

THEOREM 4.1. Execution ofEAGREE by n > max(4t, 2(t + (t - 1)‘)) processors 
results in EBA within min( f + 2, t + 1) rounds, wheref; the actual number offaults, 
does not exceed t. 

The proof of the theorem will be provided in the following series of lemmas. 

LEMMA 4.2. Suppose no correct processor is stopped at round i - 1 and let p, q, 
and r be correct processors. Then, at the end of round i, no correct processor has 
the name of a correct processor in X, every correct processor has pqs = rqs, and all 
correct processors share the same value for qs. 

PROOF. Suppose otherwise and let i be the first round in which the above 
conditions are violated in some execution of EAGREE. Since X and Ps are 
unchanged until round 2 and PPs is unchanged until round 3, it must be that 
i L 2. If i = 2 and some correct processor put the name of the origin in X, then 
this processor must not have received n - t identical values in round 2. But if the 
origin had correctly either remained silent or sent identical values to all correct 
processors in round 1, then each correct processor would have received at least 
n - t identical values in round 2. Thus, in this case, the origin must have been 
faulty. In round 2, only the origin can be put in X. Hence, no correct processor 
put the name of a correct processor in X in round 2. Each correct processor sends 
identical data to every processor, so if q is correct, each correct processor shares 
the value for qs in round 1. Moreover, in round 2, no correct processor will change 
the variables PPs from their initial value 0, hence i 2 3. 

Processors p and r receive the same set of values from a correct processor q in 
each round j 5 i, since by assumption no correct processor stops before round i. 
Further, we have supposed that no correct processor has the name of a correct 
processor in X at the end of round i -1, thus neither p nor r will default the 
corresponding variables for q. Therefore, they share qPs at the beginning of the 
execution of DETECT in round i. Moreover, any correct processor not stopped at 
round 2 has the origin in X. Thus, for any processor not stopped at round i - 1, 
any subset of P - X of cardinality 21 contains the name of at least one correct 
processor. There are two ways a correct processor adds a name to X in round 
i > 2. Both happen only during execution of DETECT. Since no correct processor 
had the name of a correct processor in X at the end of round i - 1, the first method 
(based on other processors claiming to have put the name in X) cannot introduce 
the name of a correct processor in round i. The second method for putting q in X 
requires correct processors p and r not stopped at round i - 1 with pqs # rqs. But 
this condition cannot hold for a correct q at the beginning of the execution of 
DETECT in round i. Thus, DETECT cannot have caused the failure of our 
conditions in round i. This means that no names of correct processors are included 
in X and that no correct processors q have their values for qPs defaulted to 0 at the 
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beginning of the execution of REDUCE in round i. Since REDUCE does not alter 
the values of PPs, and since all correct processors share their values for qPs for 
each correct q, the conditions cannot have been violated. Cl 

We say that value v is persistent at round i, if at least g correct processors have v 
stored in s at the end of round i. Recall that a processor is said to stop in round i 
if the only action it takes in round i + 1 is to output its value. We say that a 
processor is convinced in round i if it has at least n - t identical values stored in 
Ps at the end of round i. Note that if a correct processor is convinced in round i, 
then it stops in round i. Also, if a correct processor stops in round i < t + 1, then 
it is convinced in round i. However, a processor may stop in round t + 1 without 
being convinced. In this case, it gives its value for s as output without having 
n - t identical values in Ps. 

LEMMA 4.3. If a correct processor is convinced at round i 5 t + 1, then the value 
it has for s must have become persistent by round i - 1. 

PROOF. Assume i is the first round at which some correct processor p is 
convinced, let us say of value V. Processor p must have at least n - 2t strings qs 
with value v such that q is a correct processor. Let q be any such processor. By 
Lemma 4.2, q cannot be in X for p at round i. If i = 2, then q actually sent v to p 
in round i, so q had value v for s at the end of round i - 1. Since this holds for at 
least n - 2t 2 g correct processors, v is persistent at round 1. 

Assume now i > 2: Then before executing REDUCE in round i, p had values 
qPs such that either at least a majority (g) were v or there was no majority value 
implying v = 0. Processor q actually sent the values for qPs to p. These were the 
values q had for Ps at the end of round i - 1 and q sets s to v at this round. In any 
case, at least n - 2t correct processors q had value v for s at the end of round 
i - 1; therefore, v became persistent. Cl 

LEMMA 4.4. If a value becomes persistent before round t + 1, then it remains 
persistent throughout the execution of the algorithm and is given as output by each 
correct processor. If a value becomes persistent before round t, then all correct 
processors are convinced at most two rounds later. 

PROOF. Consider the first round i at which any value v becomes persistent. 
Suppose i < t + 1. By Lemma 4.3, no correct processor stopped at round i. Let G 
be a set of at least g correct processors, each of which associates v with s after round 
i. By Lemma 4.2, no correct processor has any element of G in X at the end of 
round i + 1. Thus, at the end of round i + 1, each correct processor has each string 
of Gs valued v; so each correct processor has s valued v. If correct p and r are not 
stopped at round i + 1, then they send the same value for qs, for each correct q, in 
round i + 2. Thus, no correct processor adds the name of a correct processor q to 
X in round i + 2. 

If any correct processor q ’ stops at round i + 1, then any correct processor not 
stopped at round i + 1, sets each string of q ’ Ps to v just before the REDUCE of 
round i + 2. Thus, each correct processor not stopped at round i + 1 has at least 
n - t strings of Ps valued v and is convinced at the end of round i + 2. Each correct 
processor either stops at round i + 1 or round i + 2 and each gives output v. 

For the second claim, suppose value v first becomes persistent at round i < t. By 
Lemma 4.3, no correct processor stops before round i + 1. As argued above, every 
correct processor has s = v at round i + 1. Any correct processor not stopped at 
round i + 1 will see n - t values v in Ps and will be convinced at round i + 2 
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because the strings of stopped processors default to s = v. We have already noted 
that if a correct processor stops at a round before round t + 1, then it is convinced 
at that round. Thus, each correct processor is either convinced at round i + 1 or 
at round i + 2. Cl 

LEMMA 4.5. If the origin is correct, then all correct processors will output its 
value. 

PROOF. If the origin is correct, then its value becomes persistent at round 1 and 
all correct processors output its value by Lemma 4.4. Cl 

In order to keep any value from becoming persistent in a round, the faults must 
send distinct sets of values Ps to different sets of the correct processors. In fact, 
these sets Ps must reduce to distinct values. We say that a fault p separates sets n 
and B of correct processors if it sends them sets Ps so that after REDUCE, no 
member of A has a value stored in ps that is the same as that of a member of B. 
We call any set of correct processors a witness set if its cardinality is at least t and 
at most n - 2t. 

LEMMA 4.6. Iffor some i, 2 I i 5 t, a fault p separates a witness set from all 
other correct processors at round i, and tf some correct processor is not convinced 
by round min(i + 2, t + I), then there are correct processors that do not havep in 
their set X by the end of round i, but by round i + 1 each correct processor will have 
p in X and set values pPs and ps to the default value 0. 

PROOF. Since some correct processor was not convinced by min(i + 2, t + l), 
no value was persistent at round 1 by Lemma 4.4. Since g + t 5 y1 - t, no correct 
processor could have n - t identical values in Ps during the execution of ROUND2; 
so all correct processors put the origin in X at round 2. Thus for each correct 
processor, the origin is in X by the beginning of round i + 1. Note that, by Lemmas 
4.3 and 4.4, no correct processor stopped at round i. Let A be the witness set 
separated from the rest of the correct processors by p in round i. Let B be the rest 
of the correct processors, which will be of size at least t. In round i + 1 before 
DETECT, each correct processor has values in Aps different from any values it has 
in Bps. Also, by Lemma 4.2, each correct processor has A and B as subsets of 
P - X. Thus, if p is not already in X, DETECT will add p to X and set pPs to 0, 
and REDUCE will then set ps to 0. But if p is in X for some member of A at the 
end of round i, then p is not in X for any member of B at the end of round i; so 
some correct processors do not have p in X at the end of round i. 0 

LEMMA 4.7. If there is a correct processor that is not convinced by round i + 2 
with 1 % i 5 t - 1, then there is a set {pj 1 1 I j 5 i) of i distinct faulty processors 
such that, for each j, each correct processor has pj in X and value pjs defaulted to 0 
by the end of round j + 1 (and in each succeeding round). 

PROOF. The proof is by induction on i. In case i = 1, let the origin be pl. If 
some correct processor is not convinced by round 3, then, by Lemma 4.4, no value 
was persistent in round 1. As we argued in the proof of Lemma 4.6, each correct 
processor has pI in X and pI s defaulted to 0 by the end of round 2. Once a 
processor p is in X, its values for pPs are defaulted to 0 in ROUND so REDUCE 
keeps the value 0 in ps. Thus, p1 remains in X and p1 s remains defaulted to 0 after 
round 2. 

Assume that the result has been shown for i - 1, with 2 I i I t - 1 and assume 
that some correct processor is not convinced by round i + 2. By the induction 
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hypothesis, there are i - 1 distinct processors pj for 1 5 j 4 i - 1 such that every 
correct processor has pj in X and PjS defaulted to 0 by the end of round j + 1 and 
in every succeeding round. It suffices to show that there is a processor pi such that 
pi is distinct from pj for j < i and each correct processor has pi in X and PiS defaulted 
to 0 by the end of round i + 1. (The argument above shows that these conditions 
continue to hold thereafter.) By Lemma 4.4, no value was persistent by round i. 

If at round i, p separates a witness set from all other correct processors, then, by 
Lemma 4.6, at round i + 1 for each correct processor, p will be added to X and its 
values pF’s and ps will be set to the default value 0. Note that no pj with j < i can 
separate correct processors at round i, since all of its values are defaulted to 0. 

Suppose no fault separates a witness set from the other correct processors. Then, 
each of the at most t - 1 faults (not counting the origin) can separate at most 
t- 1 correct processors from the other correct processors. Hence, there would 
be a set of correct processors of size at least n - t - (t - 1)’ I g that agreed 
on s after round i and their value would be persistent. Thus, some fault separated 
a witness set from other correct processors at round i and this fault can be taken 
to bepi. q 

LEMMA 4.8. Zf there are only f < t faults, then all correct processors are convinced 
by round f + 2. 

PROOF. Assume to the contrary that there is a correct processor not stopped by 
round f + 2. By Lemma 4.7, there is a set (pi 1 1 I j 5 f) off distinct faulty 
processors such that, for each j, each correct processor has pj in X and value pjs 
defaulted to 0 from round j + 1 on. Since there are exactly f faults, each fault is in 
X for each correct processor by the end of round f + 1. By Lemmas 4.3 and 4.4, 
no correct processor is stopped by round f + 1. But no fault is left to separate any 
correct processors, so each correct processor has identical values for PPs after 
round f + 1. Thus, in round f + 2 all correct processors send identical values for 
Ps and, by the end of round f + 2, all correct processors have at least n - t identical 
values in Ps and stop. This contradicts the assumption that there is a processor not 
convinced by round f + 2. Cl 

LEMMA 4.9. All correct processors have the same value stored in s by round 
t+ 1. 

PROOF. Recall that all processors stop by round t + 1 and give their outputs 
by round t + 2. If any correct processor is convinced by round t + 1, then by 
Lemmas 4.3 and 4.4, all correct processors output the same value by round 
t + 2. Since each correct processor gives as output the value it has stored in s in 
the round in which it stops, in this case, all correct processors must have stored the 
same (final) value in s by round t + 1. 

Assume not all correct processors have the same value stored in s by round 
t + 1. Then no correct processor is convinced by round t + I, and, by Lemma 4.4, 
no value is persistent by round t. By Lemma 4.7, there is at most one fault not 
discovered by all correct processors by the end of round t. Also no correct processor 
stopped by round t. At round t, the one undiscovered fault must separate a witness 
set to prevent g correct processors from storing the same value in s, for otherwise 
that value would be persistent at round t. By Lemma 4.6, this undiscovered fault 
is put in X in round t + 1 by every correct processor. Since each correct processor 
defaults values corresponding to all faulty processors to 0, all correct processors 
agree on Ps and hence s at the end of round t + 1. This contradiction of our 
original assumption completes the proof. Cl 
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If n > max(4t, 2(t + (t - 1)2)), then using EAGREE the correct processors reach 
eventual agreement by Lemma 4.9 (condition (i)) and Lemma 4.5 (condition (ii)). 
By Lemma 4.8 and its specification EAGREE requires at most min(f+ 2, t + I) 
rounds of information exchange. This completes the proof of Theorem 4.1. Cl 

5. Open Problems 

Several unauthenticated deterministic EBA algorithms are known; but none attains 
the lower bounds of Sections 2 and 3 for all n and t with n > 3t [ 1, 8, 20, 231. The 
question even remains open for authenticated algorithms: Is there a deterministic 
EBA algorithm that attains the lower bounds for all n and t with n > 3t when the 
faults are restricted not to corrupt a given authentication protocol? Wheh the faults 
are restricted to crash, however, the lower bounds are known to be attainable: 
Fischer and Lamport provide a simple algorithm for EBA that achieves early 
stopping by roundf+ 2 (M. Fischer and L. Lamport, private communications). 
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