The Weakest Failure Detector for Consensus

References and Thanks

- Gärtner, Guerraoui and Kouznetsov, The CHT Play
 - A highly recommended informal and very accessible overview of the CHT proof
- Some of the following slides were provided by Rachid Guerraoui
What we need to prove

- To prove that a failure detector class C is the weakest for a problem P, one needs to show that
 - If: P can be solved with $D \in C$, and
 - Only if: For all C' that can be used to solve P, $C' \geq C$
- $\diamond S = \diamond W$ is sufficient for Consensus with $n > 2t$
- Need to prove that for all D that can be used to implement Consensus, $D \geq \diamond W$ with $n > 2t$

The Outline

- Define a failure detector Ω (*leader oracle*):
 - Output: process id
 - Eventually all correct processes permanently output the same process id p, and p is correct
- Lemma 1: For any failure environment: $\Omega \geq \diamond W$
 - Proof: ?
- Lemma 2: For any failure environment:
 - If D solves Consensus, then $D \geq \Omega$
 - Proof: ? 😊

A question: Is it possible that $\Omega > \diamond W$?
The Outline

• Theorem: For any failure environment:
 If D can be used to solve Consensus, then $D \geq \diamond W$

Proof:
• If D solves Consensus, then $D \geq \Omega$
 (Lemma 2). $\Omega \geq \diamond W$ (Lemma 1).
 Transitivity: If D solves Consensus, then $D \geq \diamond W$

D solves Consensus $\Rightarrow D \geq \Omega$

• Let A be a consensus algorithm using D
• Construct an algorithm T that emulates Ω
 on top of D
Overview of the emulation

1. The exchange
2. The simulation
3. The tagging
4. The stabilization
5. The extraction

(1) The Exchange

• Every process periodically queries its failure detector module (D) and sends all outputs it has seen to all
• A process builds a growing DAG using the outputs provided by other processes
• A vertex of the DAG is a triple:
 – (process, f. d. value, f. d. query#)
• An arrow \((p_1,d_1,k_1) \rightarrow (p_2,d_2,k_2)\) means that \(p_1\) saw \(d_1\) before \(p_2\) saw \(d_2\)
(1) The Exchange Algorithm

DAG := empty graph;
k := 0;
Forever do:
• k := k+1;
• p receives (q,DAG_q) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAG_q;
 Add [p,d,k] to DAG and edges from all vertices of DAG to to [p,d,k];
 Send (p,DAG) to all processes
(1) The Exchange Algorithm

Properties of Local DAGs

• For any correct process p and time t
 (1) $DAG_p(t)$ is transitively closed
 An easy induction
 (2) There is a time $t' \geq t$, d and k such that $\forall v \in Vertices(DAG_p(t))$, $v \rightarrow (p, d, k)$ is an edge of $DAG_p(t')$
Properties of Local DAGs

• The DAG of each correct process is ever increasing finite approximation of the same infinite limit graph
 – The common portion of correct process DAGs grows without limit

(2) The Simulation

• Every process p_i uses its DAG to simulate runs of A in the system, i.e., every process locally plays the role of all other processes
• Whenever p_i updates its DAG, p_i triggers runs of A for:
 – All paths in the DAG
 – All input vectors I_0, I_2, \ldots, I_n, where I_i makes processes p_1-p_i propose 1 and the rest propose 0
(2) The Simulation

p_i simulates runs of A for each
(0000), (1000), (1100), (1110), (1111)

Forever do:
• p receives (q,DAG_q) // maybe null
• $d :=$ output of p’s failure detector
• $DAG := DAG \cup DAG_q$;
 Add $[p,d]$ to DAG and edges from all
 vertices of DAG to to $[p,d]$;
 $\textbf{Simulate}(A,DAG)$;
Send (p,DAG) to all processes
The Simulation Algorithm

For each \(I = I_j, \ 0 \leq j \leq n \) do

\[Y_I := \emptyset; \]

For each path \(g \) in \(\text{DAG}_p \):

\[R_g := \text{a run of A from } I \text{ with the sequence of failure detector events induced by } g; \]

\[Y_I := Y_I \cup R_g; \]

Simulation output is a collection of trees \(Y_{ij} \)

(2) The Simulation

Forever do:

- \(p \) receives \((q, \text{DAG}_q)\) // maybe null
- \(d := \) output of \(p \)'s failure detector
- \(\text{DAG} := \text{DAG} \cup \text{DAG}_q; \)
 Add \([p,d] \) to \(\text{DAG} \) and edges from all vertices of \(\text{DAG} \) to \([p,d];\)

\(\{Y_{I_0}, \ldots, Y_{I_n}\} := \text{Simulate}(A, \text{DAG}); \)

Send \((p, \text{DAG})\) to all processes
Properties of the simulation at correct processes

Property 1: For any vertex S of Y_I, there exists a finite trace E containing only the steps of correct process such that $S \cdot E$ is in Y_I and all correct process decide in $S \cdot E$

Intuition Behind Property 1
(3) Tagging

Forever do:
- p receives (q,DAG_q) // maybe null
- d := output of p’s failure detector
- DAG := DAG ∪ DAG_q;
 Add [p,d] to DAG and edges from all vertices of DAG to [p,d];
 \{Y_{i_0},...,Y_{i_n}\} := Simulate(A,DAG);
 TAG(\{Y_{i_0},...,Y_{i_n}\});
 Send (p,DAG) to all processes
The Tagging Algorithm

- For every vector Y_{ij}: Tag I_j as
 - **0-valent** if only 0 are decided in Y_{ij}
 - **1-valent** if only 1 are decided in Y_{ij}
 - **Bivalent** if both 0 and 1 are decided in Y_{ij}

(3) Tagging

Forever do:
- p receives (q, DAG_q) // maybe null
- $d := \text{output of } p$'s failure detector
- $\text{DAG} := \text{DAG} \cup \text{DAG}_q$;
 Add $[p,d]$ to DAG and edges from all vertices of
 DAG to to $[p,d]$;
- $\{Y_{i0}, \ldots, Y_{in}\} := \text{Simulate}(A, \text{DAG})$;
- $\text{Tagged_forest} := \text{TAG}(\{Y_{i0}, \ldots, Y_{in}\})$;
- Send (p, DAG) to all processes
Tagging Properties

• By validity of consensus, I_0 is always tagged as 0-valent and I_n as 1-valent
• Other 0 or 1-valent input vector can only get tagged bivalent
• A bivalent input vector stays bivalent forever

Critical Index

• There is some index k in the sequence of vectors such that I_{k-1} is 0-valent and I_k is not: k is called the critical index

• If I_k is 1-valent, then p_i trusts p_k

• (we do not consider here the more complicated case when I_k is bivalent)
(4) The Stabilization

- Eventually, the critical index at a given process does not change anymore: this is because the index can only decrease and cannot go lower than 1

- All DAGs converge to the same infinite DAG and the same critical index k is eventually computed at all processes

(5) The Extraction

Forever do:
- p receives (q,DAG_q) // maybe null
- d := output of p’s failure detector
- DAG := DAG ∪ DAG_q;
 Add [p,d] to DAG and edges from all vertices of DAG to to [p,d];
 \{Y_{i0},...,Y_{i\in}\} := Simulate(A,DAG);
 Tagged_forest := TAG(\{Y_{i0},...,Y_{i\in}\});
 p := Extract_Leader(Tagged_forest);
 Output p;
 Send (p,DAG) to all processes
The Extraction Algorithm

If k is critical then
 If I_{k-1} is 0-valent and I_k is 1-valent then
 return p_k;
 else // I_{k-1} is 0-valent and I_k is bivalent then
 Look for decision gadgets;
 choose a process based on a deterministically chosen decision gadget;

Correctness of Extraction

Claim: Eventually, (1) all correct processes permanently return the same process p_k and (2) p_k correct

Proof:
 (1) At each correct process, the critical index eventually stabilizes at k.
 It is eventually the same at all processes.
 All correct processes return p_k
Correctness of Extraction

(2) Assume p_k crashes

\[I_{k-1}, \text{tag}(I_{k-1})=0 \quad I_k, \text{tag}(I_k)=1 \]

Run without p_k where all processes decide

A contradiction

Decision Gadgets: Fork

\[I_k, \text{tag}(I_k)=\text{Bivalent} \]

p is correct

Run without p where all processes decide 0
Decision Gadgets: Hook

\[l_k, \text{tag}(l_k) = \text{Bivalent} \]

\[S (\text{bivalent}) \]

\[S_0 (0\text{-valent}) \]

\[S_1 (1\text{-valent}) \]

Run without \(p \) where all processes decide 0

\(p \) is correct

What people think 😊

- Actual replies I've got when enquiring about an instructional material on CHT
 - My advice is: don't do it!
 - I tried to understand it for a while and gave up
 - It's a terrible proof
 - It’s mind-boggling
 - No way I'm going to try and teach it in a class