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Circumventing Impossibility

Failure Detectors

Circumventing Impossibility

• Use timing assumptions
� ∆, Φ

• Timing assumptions can be difficult to 
work with

• What about time-free algorithms?
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Time-Free Algorithms

• Describe an algorithm using a failure 
detector abstraction [Chandra & Toueg 96]

• By abstracting away time we 
– get simpler algorithms
– could specify (minimum) conditions under 

which certain problems are solvable in a 
simpler way

– characterize systems based on their ability to 
implement certain types of failure detectors 

Environment Model

• Asynchronous message-passing system
– fully connected

• Crash failures
• n process P1,…,Pn

• Reliable links between each pair of correct 
processes
– Can implement Reliable Broadcast
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The Failure Detector Abstraction

• Each process has local failure detector 
oracle
– typically outputs list of processes suspected to 

have crashed at any given time
• In each execution step, a process

– receives a message (if there is one ready)
– queries its failure detector oracle
– makes a transition to a new state
– may send messages to other processes

Specifying Failure Detectors

• Accuracy: which processes are not 
suspected and when

• Completeness: which processes are 
suspected and when

• Why do we need both?
– A trivial failure detector will satisfy any 

accuracy (completeness) property by never 
(always) suspecting any (all) processes 
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Completeness

• Strong Completeness: Eventually every 
process that crashes is permanently 
suspected by every correct process

• Weak Completeness: Eventually every 
process that crashes is permanently 
suspected by some correct process

Accuracy
• Strong Accuracy: No process is suspected 

before it crashes
• Weak Accuracy: Some correct process is never 

suspected
• Eventual Strong Accuracy: Eventually correct 

processes are not suspected by any correct 
process

• Eventual Weak Accuracy: Eventually some 
correct process is never suspected by any 
correct process



5

Failure Detector Classes

Accuracy

Completeness Strong Weak Eventual 
Strong

Eventual 
Weak

Strong
Perfect

P
Strong

S

Eventually 
Perfect

◊P

Eventually 
Strong

◊S

Weak Q
Weak

W ◊Q
Eventually 
Weak

◊W

Reducibility of failure detectors

• If a f. d. D’ can be implemented using a f. 
d. D, then 
– D ≥ D’, or D’ is reducible to D, or D’ is weaker

than D
• If D ≥ D’ and D’≥ D D and D’ are equiv.
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Reducibility of classes of failure 
detectors

• C and C’ are classes of f. d. and ∀D∈C, ∃D’∈C’: 
D ≥ D’ C ≥ C’
– C ≥ C’, or C’ is weaker than C

• If C ≥ C’ and C’ ≥ C C and C’ are equiv.
• If C ≥ C’, then any problem solvable using a 

D’∈C’ is also solvable using some D∈C

• P ≥ Q, S ≥ W, ◊P ≥ ◊Q, ◊S ≥ ◊W
• P > S, ◊P > ◊S, P > ◊P, S > ◊S, P > ◊S

Weak Completeness Strong 
Completeness

• Let D be a failure detector satisfying Weak 
Completeness

• Construct a failure detector D’ satisfying 
Strong Completeness

• Conclusion: D ≥ D’
• Theorem:  Q ≥ P, W ≥ S, ◊Q ≥ ◊P, ◊W ≥ S
• Corollary: Q = P, W = S, ◊Q = ◊P, ◊W = ◊S
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Work for up to  f < n/2 crashes 1
2

3

4

• Processes are numbered 1, 2, …, n

• They execute asynchronous rounds

• In round r , the coordinator is
process (r mod n) + 1

Solving Consensus using        : Rotating Coordinator AlgorithmsS

• In round r , the coordinator:
- tries to impose its estimate as the consensus value
- succeeds if  does not crash and it is not suspected by S

Consensus using ◊S : Phase k; p = k mod n

• q sends (q, k, estimate, restimate) to p
– p awaits a majority of round k estimates and chooses 

the estimate EST with the highest restimate

• p broadcasts (p,EST,k) 
• q waits to hear (p,EST,k), or FD suspects p

– if q hears from p, then q responds with (ack, k) and 
estimate := EST; restimate := k

– else q sends (nack, k)
• p awaits a majority of round k ack/nack’s

– If acks, then p R-broadcasts (decide v)
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Why does it work?

n=7

p decides v every q changes 
its estimate to v

f=3

Agreement:

Agreement

• Lemma 1: Let r be the smallest round such 
that c = r mod n decides. Let estc be the 
estimate sent by c prior to deciding. Then

For all rounds r’ ≥ r: If c’ = r’ mod n 
sends estc’, then estc’ = estc

Proof: By induction on r’. Trivial for r’=r. Assume for r≤r’<k. Prove for 
r’=k. Since a majority responds to c with ack, one of the responding 
processes p sent its estimate to ck. Hence tsp≥r. Since ck selects 
maximum, it will select the estimate of q with timestamp t, r ≤t<k. By 
the induction hypothesis estq=estc.
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Consensus using ◊S

• Agreement is immediate from Lemma 1
• Termination:

– No process blocks indefinitely in any one of 
the wait statements. Why?

– Eventually, all processes do not suspect a 
single correct process. Once it becomes a 
coordinator, everybody decides

• Validity: obvious

Consensus using ◊S

• Theorem: Consensus among n>2t is 
solvable using ◊S

• Corollary: Consensus among n>2t is 
solvable using ◊W
– Why? 
– because ◊W ≥ ◊S

• The bound on the number of processes is 
tight (partitioning argument)
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Implementation with partial 
synchrony

• Assume ∆ is unknown
• Each process p holds a local estimate ∆p

• Broadcast  “I am alive” to all every time 
unit

• If p does not receive “I am alive” from q 
during the last  ∆p time units suspect q

• If p receives a message from q and q is 
suspected stop suspecting q, ∆p:= ∆p+1

To which class belongs the failure detector implemented above?

P


