Circumventing Impossibility

Partial Synchrony

Circumventing Impossibility

« Consensus is an important building block

for fault-tolerant computing

— Universal: any deterministic fault-tolerant

service can be implemented on top of it

* Yet, it is impossible in very practical

environments

— Asynchronous systems

— Are they really practical?

Circumventing Impossibility

» Key observation: most practical settings
are never completely asynchronous
— We could expect interleaving, arbitrarily long
periods of synchrony and asynchrony
« Synchrony assumptions:

— Ways to formally capture types of semi-
synchronous behavior found in practice

— Implementability of Consensus under various
assumptions

Sources of timing uncertainty

Relative process |Message/access
speeds delay
Message
passing Y Y
Shared memory
with variables Y NA
Shared memory
with objects Y Y

Synchrony Assumptions

* Real time clock

— At each tick of the clock some processes take exactly
one step of their protocol

* Bounded relative process speeds:

— 3 integer ®>0: in any time interval in which some
process takes @ real time steps, each correct process
takes at least 1 step

« Bounded message delay:

— Jinteger A>0: if p sends m to g at time t, then g
receives m by the time t+A

More assumptions

« Messages are received in the order which
respects the real time order of their send
events

« Atomic broadcast is available
» Atomic receive/send

Dolev, Dwork and Stockmeyer, “On Minimal
Synchronism Needed for Distributed Consensus”

&oo 01 |11 | 10|00 | 01|11 10

00| O 0 0 0 0

01]1 0 0 0 1 n

11 n n n n n n n n

101 O 0 n n 0 0 n n

s=0 s=1
Crash failures

Partial Synchrony

Jdand A

* Processes (communication) are (is)
partially synchronous if ® (A) holds
eventually (0)
— Synchronous if ® (A) holds always

[1® (A) holds eventually

— There exists a Global Stabilization Time
(GST) such that ® (A) holds in [GST,x)

Dwork, Lynch and Stockmeyer, Consensus in the Presence of Partial Synchrony

Models of Partial Synchrony

Communication

s,0="7?

Processes

L
T

ps

64 possible combinations

ps,A=? T
ps
S,A=? +
s 4
S
crash ¢
omission
auth Byz
Byzantine
Failures

‘ps,<I)=?

Summary of the DLS Results

Failure |Synch |Asynch [OA,® |0A, 0D |A, 0D
type
Crash t o 2t+1 | 2t+1 t
Omissi [o ot+1 | 2t41 | 2t+1
on
Auth. t o 3t+1 | 3t+1 | 2t+1
Byz
BYZ. | 341 | o | 3t¢1 | 3t¢1 | 3t+1

ALL BOUNDS ARE TIGHT

System Components

Consensus Algorithm

Partially Synchronous Environment
with failures

Round Simulation
(Basic Round Model)

» Abstracts away timeliness assumptions
— The failure models stay the same

— 4 Consensus algorithms, 64 round
simulations

* Processing is divided into rounds
* Each round consists of

— Send sub-round

— Receive sub-round

— Computation sub-round

The round structure

* Send sub-round:

— Each process sends messages to any subset of the
processes

* Receive sub-round:

— Some subset of the messages sent to the process
during the send sub-round are delivered

« Computation sub-round:

— Each process executes a state transition based on
the set of messages just received

Requirements

 There is a round GST such that

— All messages sent from correct processes to
correct processes at r > GST are delivered
during r

* Processes do not know when GST occurs

Crash and Omission failures

* N processes: py,...,P,
* n/2 resilient Consensus

« NU Agreement, Strong Unanimity and
Termination

The protocol structure

Round 1
Round 2
Round 3
Round 4

Phase 1

Round 4k-3

Round 4k-2
Phase k | Round 4k-1

Round 4k

Phase k is coordinated by a process p;: i =k mod n

Phase k=1 mod n

p;: send (list,k) to p;, where

— list = {v}, if v is the only locked v €V

— list =V, if no values are locked round 1 of k
— list = &, otherwise

pi: W is in lists of > n-t processes

— Send (lock, w, k) to all processes

p;: receives (lock, w, k) } round 2 of k
— Lock w (ulocks previous locks for w),

— send (ack, k) to p;
p;: receives (ack, k) from t+1 processes: - round 3 of k
— Decide w, but does not halt

Phase k =1 mod n

 Round 4 of k: Lock-release

* p;: broadcasts (v,h) for each v such that v
was locked by p; at phase h

* p;: receives (w,h’) from some process:

— If p; locked (v,h) with v#w and h=<h’ =» unlock
(v,h)

Agreement

» Let k be the smallest phase at which some
process decides
— p;, i=k mod n decides v

« = at least t+1 processes locked v at
phase k

« =» it is impossible for any further
coordinator to lock a different value since
any two sets of sizes n-t and t+1 intersect

Validity

* Very weak validity is satisfied
— More than a single decision is possible

» Achieving weak (strong) unanimity is a
simple exercise
— And is left as such ©

10

Termination

» After GST all processes learn about the
highest phase value locked by any
process (if any) = at most one value v is
locked by all correct processes

 All processes will send to the coord. either
v or the entire set V (which includes v)

* The coordinator will see some value
appearing >n-t times, etc...

Authenticated Byzantine

+ A simple modification of the algorithm:
— Every message is signed

— Proposals have a sequence of n-t signed
messages attached as a proof

— Everybody verifies proofs, signatures

11

Impossibility for 2<n<2t

Partition n processes into two sets each of
which is of size at least 1 and at most t

Initialize each set with conflicting values

Fail either set to force conflicting decisions
in two different executions

Combine these two executions to achieve
an execution with conflicting decisions

12

