
1

Impossibility of Consensus with
at most one faulty process

Shared memory and message
passing

Assumptions

• n processes
• n 1-writer/n-reader R/W registers
• At most one process can fail by stopping

– 1-resilient

• Last time: wait-free Consensus is
impossible
– n-1 resilient

2

Outline of the proof

• Let B be a 1-resilient Consensus algorithm
• We show how to use B to produce an

algorithm A that solves wait-free
Consensus for 2 processes

• B does not exist

The Algorithm B Structure

• n processes q0,…,qn-1

• Each qj writes to a single shared register rj
whose initial value is arbitrary

• The code of qj:
(1) Read some shared variable rk

(2) Perform state transition
(3) Write the resulting state to rj (full

information model)

Super
step

Exercise: Show that no generality is lost by assuming this structure

3

The Simulation Structure

• Two processes: p0 and p1

• Let each pi, i=0,1, simulate half of the
processes
– Results in a weaker result. Which and Why?

• Let each pi, i=0,1, simulate each process
qj, j=0,…,n-1, in a round-robin manner

Exercise: Prove by simulation that n/2-resilient Consensus cannot be implemented
in an asynchronous shared memory model with R/W registers. Take care to be
precise.

Overview of the simulation

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

2

2

4

Overview of the Simulation
• Process pi, i=0,1:

j := 0;
while true do

k:=next super-step of qj to execute;
s:=state of qj at the end of super-step k-1;
v:=value read by qj; // simulate read
s’:=transition(j,s,v); // simulate transition
write s’ to qj’s register; // simulate write
j:=j+1 mod n

Concurrent Execution of A

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

1

2

1

2

5

Data Structure

• For each simulating process pi, i=0,1, for
each simulated process qj, j=0,…,n-1, and
for each simulated super-step k≥0:
Suggest[j,k,i]: The state of qj at the end of

super-step k as suggested
by pi; initially ⊥

Flag[j,k,i]: Competition flag of pi for super-
step k of process pj; initially ⊥

At most one winner

• A super-step k of qj is computed if either
– Flag[j,k,0] ≠⊥ and Flag[j,k,1] ≠⊥, or
– Flag[j,k,i]=⊥ and Flag[j,k,1-i]=1, i=0,1

• Winner of a computed super-step k of
process qj is the process pi that sets
Flag[j,k,i] if exists, or p0 otherwise

• Claim 1: There is at most one winner for
each computed super-step

6

Proof of Claim 1

W(Suggest[j,k,i]) R(Suggest[j,k,1-i])

W(Suggest[j,k,1-i]) R(Suggest[j,k,i])

W(Suggest[j,k,i]) R(Suggest[j,k,1-i])

W(Suggest[j,k,1-i]) R(Suggest[j,k,i])

Concurrent Execution of A

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

1

2

1

2

7

Progress

• Simulation of at most one process qj might
get stuck

• If pi is stuck on simulating a super-step k
of qj, then p1-i fails after writing
Suggest[j,k,1-i], but before setting
Flag[j,k,1-i]

• pi will be able to attain progress on
simulating all processes except for
possibly qj

Concurrent Execution of A

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

1

2

1

2

3

1

3

8

Simulation Correctness: Informally

• In each execution α of A, the values taken
by Suggest registers are consistent with
states reachable in an execution β of B
– But not all Suggest registers! Which?
– Only those corresponding to computed super-

steps of winners

Simulation Correctness: Precisely

• For every qj and k≥1:
Read point of super-step k of qj in α: The
point where the winner of k of qj reads the
state from some other process register
– After line 2 of get-read

Write point of k of qj in α: The point where
the winner of k of qj sets Flag[j,k,i] to 1, or
the second process sets Flag[j,k,i] to 0

9

Concurrent Execution of A

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

1

2

1

2

R W RR W R W W R Wβ:

Correspondence Lemma

• If qj executes at least k super-steps in β,
then in α:

1. Eventually computed(j,k)=true, and after that
point

2. Suggest[j,k,w]=qj’s state and register after k
super-steps in β, where w is the winner of k
of j

10

Concurrent Execution of A

q0

q1

q2

q0

q1

q2

p0

p1

init0

init1

1

1

1

1

2

1

2

R W RR W R W W R Wβ:

Proof of Correspondence Lemma

(1) is trivial
(2) is proved by induction on the length of α

11

Finally…

• get-state(j,k-1) returns Suggest[j,k-1,w] where w
is the winner of super-step k-1 of qj By
Correspondence Lemma, Suggest[j,k-1,w]=state
of qj after k-1 super-steps in β If the state is
deciding, then the decision satisfies Agreement
and Validity

• Termination: Simulation can get stuck for at
most one qj in β at most one process fails
Since B is 1-resilient, all correct processes
decide in β and therefore, in α

Exercise: Show that the simulation works with regular registers.

Message Passing

• Simulate a send/receive system on top of
a shared memory system with R/W
registers

• The result: a shared memory system
whose external behavior is
indistinguishable from message passing

12

Simulation

• 1-writer/1-reader register Ri,j for each
ordered pair of processes (i,j)

• Send(m)i,j: Append m to Ri,j

• Receive:
– Process i polls Rj,i for each j, 1≤j≤n
– If m is at the head of Rk,i, Receive(m)k,i,

advance the (local) head pointer

Exercise: Fill in missing details of the simulation.

Impossibility in message-passing

• Theorem [aka FLP]: There is no algorithm
for solving Consensus problem in an
asynchronous message passing system
with n processes, one of which can fail by
crashing

• Proof?

