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Shared Memory and Impossibility 
of Wait-Free Consensus

Outline

• Asynchronous shared memory model
• Wait-free Consensus in shared memory 

with R/W variables
• Power of shared variables
• Wait-free Consensus hierarchy
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Shared Memory Models

• Asynchronous
– No rounds: computation step is a single state 

transition of some process
• Two types of IPC:

– Strongly coupled: through shared variables
• Mutual exclusion, lower bounds

– Loosely coupled: through shared objects
• More general and flexible

Shared Variables

• S. v. semantics are defined by its type
• Shared variable type:

– A set V of values
– An initial value v0∈V
– A set of invocations
– A set of responses
– A function f: invocations × V responses × V 
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Read/Write Variable Type (register)

• Arbitrary set V of values 
• An arbitrary initial value v0∈V
• Invocations: read, write(v), v∈V
• Responses: v∈V, ack
• f: 

f(read,v)=(v,v); 
f(write(w),v)=(ack,w)

Computation

• State is a vector of the local process states and 
the shared variable values

• A computation step:
– Process i chooses a shared variable x to access 

based on the current state
– Invoke an operation on x and get a response
– Perform a state transition based on the response and 

the current state
• An execution is an alternating sequence of 

states and steps, starting from an initial state
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Consensus in an Asynchronous 
Shared Memory with Registers

• n processes
• n 1-writer/multi-reader shared registers
• Initial value of i is in a local variable xi

• Decision is written to a local variable yi

• Any number of t<n of processes can fail by 
stopping

Consensus Requirements

• Agreement and Validity as before
• Termination: In a fair execution, each 

correct process eventually decides
– Fairness: In an infinite execution, all correct 

processes must take infinitely many steps
– This termination requirement is called wait 

freedom
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Lemma 1

• If
– C1 and C2 are univalent states
– C1 and C2 are indistinguishable to process i

• Then,
– C1 is v-valent iff C2 is v-valent for v∈{0,1}

Proof

• Run i alone from C1. Eventually i must 
decide v. Why?
– Otherwise, i does not decide in a fair 

execution where all processes but i have 
failed not wait-free!

• Run the same steps from C2. Process i 
must decide v

• Since both C1 and C2 are univalent they 
are both v-valent. QED



6

Lemma 2

• There exists a bivalent initial state

• 0…0 0-valent, 1…1 1-valent
• 01…1 looks like 0…0 to process 1

– Lemma 1 01…1 is 0-valent
• 01…1 looks like 1…1 to process 2  

– Lemma 1 01…1 is 1-valent
• 01…1 is bivalent

Critical Processes

• Every state has at most n successors
– One for each process that can take a step

• Let C be a bivalent state
• A process i is critical in C if C·i is univalent

• Lemma 3 (Diamond Lemma): If C is 
bivalent, then not all processes are critical 
in C
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Proof of Lemma 3
C

i j

i
j

Are we done?

• Yes! Start from an initial bivalent state
• For every subsequent state, use a non-

critical process (Lemma 3) to make a step
• The resulting state is bivalent
• We constructed an execution where all 

states are bivalent
– Nobody decides. Why?
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Read-Modify-Write variables

• RMW variable x has RMW operations
• Process i calling RMW operation performs 

all of the following steps atomically:
– Read x
– Perform some computation on x changing 

both internal state of i and x
– Write the new value to x

• All synchronization primitives you’ve seen 
in the OS course are RMW variables

Examples of RMW variables

• Test-And-Set (TS):
TS():

tmp := x;
x := 1;
return tmp;

• f(TS,v) = (v, 1)
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Consensus using TS

• n=2
• Shared:

– R[0], R[1]: R/W variables, initially ⊥
– x: is a TS variable, V={0,1}, initially 0

• Process i:
write(R[i],initi);
win := TS();
if (win = 0) decide R[i];
else decide R[1-i];

Consensus using TS

• Upper bound: Wait-free Consensus can be 
solved using TS and registers for n≥2

• Lower bound: Wait-free Consensus cannot 
be solved using TS and registers for n>2
– Proof: Re-prove the “diamond” lemma with 

n>2 and TS
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Compare-And-Swap

• CAS(old,new):
tmp := x;
if (x=old) then

x := new;
return tmp;

• f: f(CAS(u,v),w) = (w,v), if w=u
f(CAS(u,v),w) = (w,w), otherwise

Consensus using CAS

Shared x: CAS variable, initially ⊥
Process i:

prev := CAS(⊥,initi);
if (prev = ⊥)

decide initi;
else

decide prev;
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Consensus and CAS

• Wait-free Consensus can be solved using 
CAS for any n>0

Consensus Numbers

• A variable type T has a Consensus 
number k if
– Wait-free Consensus can be solved using 

shared variables of type T and registers for 
n=k

– Wait-free Consensus cannot be solved using 
shared variables of type T and registers for 
n=k+1
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Wait-Free Consensus Hierarchy

R/W variables (registers): Consensus number 1

Test-and-Set, Fetch-and-Add, Swap,…: Consensus number 2
…

CAS,…: Consensus number ∞

Some Generalizations

• If T has non-trivial RMW operations, then 
Consensus # of T is ≥2

• If T has only operations a, b that
– commute: f(a,f(b,v))=f(b,f(a,v)), ∀v∈V, or
– overwrite: f(a,f(b,v))=f(a,v), ∀v∈V

f(b,f(a,v))=f(b,v), ∀v∈V
Then, C#(T)<3

• TS, FAA, Swap


