Byzantine Consensus

Definition

- Agreement: No two correct processes decide on different values
- Validity:
- (a) Weak Unanimity: if all processes start from the same value v and all processes are correct, then v is the only possible decision
- (b) Strong Unanimity: if all correct processes start from the same value v , then v is the only possible decision value
- Termination:...

Structure of Consensus algorithms

- Throughout an execution, processes learn about initial values of other processes
- If failures occur, some values are learnt indirectly:
- i sends 1 to j and fails: j knows that init $=1$
- j sends 1 to k and fails: k knows that j knows that init $=1$
- etc...

EIG Tree

- In general, such a chain can be constructed for every initial value
- We can design an algorithm that maintains these chains explicitly
- Maintain a tree to hold all possible value propagation chains
- Each path from a leaf to the root represents a propagation chain

EIG Tree

EIG Algorithm

- Round 1:
- decorate root with init ${ }_{i}$
- send init, to all processes
- decorate level 1 with received values: value from j decorates label j
- Round $r, 2 \leq r \leq t+1$:
- relay level $r-1$ values in the form (label, value)
- for every (x, val) received from j, decorate level r node $x \cdot j$ with val
- $W=\{$ values in the tree $\}$, if $|W|=1$, decide $v \in W$, Otherwise, decide a default value

SilentConsensus

- Round 1:
- If initi=1, send 1 to all processes;
- Round $r+1,1 \leq r \leq t$:
- If received 1 in round r \&\& has not yet broadcast a message:

W := W $\cup\{1\}$;
relay 1 to all processes;

- At the end of round $\mathrm{t}+1$:
- If $|W|>0$, decide 1 , otherwise decide 0

Proof

- Let $r \geq 1$ be a failure-free round
$-\exists$ non-failed process p that has received 1 in one of the rounds $1, \ldots, r-1 \rightarrow p$ sends 1 to all processes in the beginning of r the latest
- No such process exists \rightarrow no messages are sent
- After a failure-free round either all processes either have 1, or remain silent forever

Tolerating omissions

- Round 1:
- If init $=1$, send 1 to all processes;
- Round $r+1,1 \leq r \leq t$:
- If received ($\mathrm{x}, 1$) from $\mathrm{j} \& \&|\mathrm{x}|=\mathrm{r} \& \&$ has not yet broadcast a message:

$$
W:=W \cup\{1\}
$$

relay ($\mathrm{x} \cdot \mathrm{j}, 1$) to all processes;

- At the end of round $\mathrm{t}+1$:
- If $|W|>0$, decide 1 , otherwise decide 0

Authenticated Byzantine

- Round 1:
- If init $=1$, send $[1]_{\mathrm{si}}$ to all processes;
- Round $r+1,1 \leq r \leq t$:
- If received $[\mathrm{m}]_{\mathrm{sj}}$ from $\mathrm{j} \& \&$
$-m$ is correctly signed by $j \& \&$
- m is correctly signed by r different processes $\& \&$
- has not yet broadcast a message:

$$
\begin{aligned}
& \mathrm{W}:=\mathrm{W} \cup\{1\} \\
& \text { relay }\left[\mathrm{m} \cdot \mathrm{~s}_{\mathrm{j}}\right]_{\mathrm{si}} \text { to all processes; }
\end{aligned}
$$

- At the end of round $t+1$:
- If $|W|>0$, decide 1 , otherwise decide 0

A simpler solution

- Round 1:
- If init $=1$, broadcast $[1]_{\text {si }}$ to all processes;
- Round $\mathrm{r}+1,1 \leq \mathrm{r} \leq \mathrm{t}$:
- If received [1] $]_{\mathrm{sj}}$ from at least r different processes \&\&
- has not yet broadcast a message:

$$
W:=W \cup\{1\}
$$

broadcast [1] $]_{\text {si }}$ and relay all messages that caused it to be broadcast
At the end of round $t+1$:

- If $|W|>0$, decide 1 , otherwise decide 0

Consistent (Echo) Broadcast

- Correctness: if correct process p broadcasts a message (p, m, k) in round k, then every correct process accepts (p, m, k) in the same round
- Unforgeability: if correct process p does not broadcast (p, m, k), then no correct process ever accepts (p, m, k)
- Relay: If a correct process accepts (p, m, k) in round $r \geq k$, then every correct process accepts (p, m, k) by round $r+1$

Proof of CB algorithm (Relay)

- Message ($\mathrm{i}, \mathrm{m}, \mathrm{k}$) is accepted by non-faulty process j at round $\mathrm{r}^{\prime} \rightarrow$
- j receives n-t (echo,i,m,k), at least n-2t>t of which are from correct processes
- At r', $\mathrm{t}+1$ correct processes sent (echo,i,m,k) to all correct processes \rightarrow
- Every one of n-t correct processes will echo (i,m,k) at the round r'+1

Implementing CB with $n>3 t$

- Broadcast (i,m,k) at round k: send (init,i,m,k) to all processes
- if process j receives (init,i,m,k) at round k , it sends (echo,i,m,k) to all processes
- if before any round $r^{\prime} \geq r+1, j$ has received (echo,i,m,k) from at least $\mathrm{t}+1$ processes, it sends (echo,i,m,k) to all processes
- if by the end of any round $r^{\prime} \geq r, j$ has received (echo,i,m,k) from at least n-t processes, j accepts (i,m,k)

Consensus using CB

- Round 1:
- If init $\mathrm{i}_{\mathrm{i}}=1$, broadcast $(\mathrm{i}, 1,1)$ to all processes;
- Round $\mathrm{r}+1,1 \leq \mathrm{r} \leq \mathrm{t}$:
- If accepted 1 from at least r different processes \&\&
- has not yet broadcast a message:

$$
W:=W \cup\{1\}
$$

$$
\text { broadcast }(\mathrm{i}, 1, \mathrm{r}+1)
$$

At the end of round $t+1$:

- If $|\mathrm{W}|>0$, decide 1 , otherwise decide 0

Impossibility with $\mathrm{n} \leq 3 \mathrm{t}$

- We show impossibility for strong unanimity
- Fischer, Lynch and Merritt
- Found in textbooks
- Impossibility for weak unanimity can be proved using a similar approach:
- Fischer, Lynch and Merritt
- Section 6.6, Theorem 6.30, Distributed Algorithms, by N. Lynch

