
1

Byzantine Consensus

Definition

• Agreement: No two correct processes
decide on different values

• Validity:
– (a) Weak Unanimity: if all processes start from

the same value v and all processes are
correct, then v is the only possible decision

– (b) Strong Unanimity: if all correct processes
start from the same value v, then v is the only
possible decision value

• Termination:…

2

Structure of Consensus algorithms

• Throughout an execution, processes learn
about initial values of other processes

• If failures occur, some values are learnt
indirectly:
– i sends 1 to j and fails: j knows that initi=1
– j sends 1 to k and fails: k knows that j knows

that initi=1
– etc…

EIG Tree

• In general, such a chain can be
constructed for every initial value

• We can design an algorithm that maintains
these chains explicitly

• Maintain a tree to hold all possible value
propagation chains
– Each path from a leaf to the root represents a

propagation chain

3

EIG Tree

1 2 3

12 13 21 23 31 32

initial values of 1,2,3 learnt
directly from 1,2,3

initial values of 1,2,3 learnt
through one intermediate
process

EIG Algorithm
• Round 1:

– decorate root with initi
– send initi to all processes
– decorate level 1 with received values: value from j

decorates label j
• Round r, 2≤r≤t+1:

– relay level r-1 values in the form (label, value)
– for every (x,val) received from j, decorate level r node

x·j with val
• W={values in the tree}, if |W|=1, decide v∈W,

Otherwise, decide a default value

4

SilentConsensus

• Round 1:
– If initi=1, send 1 to all processes;

• Round r+1, 1 ≤r ≤t:
– If received 1 in round r && has not yet

broadcast a message:
W := W ∪ {1};
relay 1 to all processes;

• At the end of round t+1:
– If |W|>0, decide 1, otherwise decide 0

Proof

• Let r≥1 be a failure-free round
– ∃ non-failed process p that has received 1 in

one of the rounds 1,…,r-1 p sends 1 to all
processes in the beginning of r the latest

– No such process exists no messages are
sent

• After a failure-free round either all
processes either have 1, or remain silent
forever

5

Tolerating omissions

• Round 1:
– If initi=1, send 1 to all processes;

• Round r+1, 1 ≤r ≤t:
– If received (x,1) from j && |x|=r && has not yet

broadcast a message:
W := W ∪ {1}
relay (x·j, 1) to all processes;

• At the end of round t+1:
– If |W|>0, decide 1, otherwise decide 0

Authenticated Byzantine
• Round 1:

– If initi=1, send [1]si to all processes;
• Round r+1, 1 ≤r ≤t:

– If received [m]sj from j &&
– m is correctly signed by j &&
– m is correctly signed by r different processes &&
– has not yet broadcast a message:

W := W ∪ {1}
relay [m·sj]si to all processes;

• At the end of round t+1:
– If |W|>0, decide 1, otherwise decide 0

6

A simpler solution

• Round 1:
– If initi=1, broadcast [1]si to all processes;

• Round r+1, 1 ≤r ≤t:
– If received [1]sj from at least r different processes &&
– has not yet broadcast a message:

W := W ∪ {1}
broadcast [1]si and relay all messages that
caused it to be broadcast

At the end of round t+1:
– If |W|>0, decide 1, otherwise decide 0

Consistent (Echo) Broadcast

• Correctness: if correct process p broadcasts a
message (p,m,k) in round k, then every correct
process accepts (p,m,k) in the same round

• Unforgeability: if correct process p does not
broadcast (p,m,k), then no correct process ever
accepts (p,m,k)

• Relay: If a correct process accepts (p,m,k) in
round r≥k, then every correct process accepts
(p,m,k) by round r+1

7

Proof of CB algorithm (Relay)

• Message (i,m,k) is accepted by non-faulty
process j at round r’

• j receives n-t (echo,i,m,k), at least n-2t>t of
which are from correct processes

• At r’, t+1 correct processes sent
(echo,i,m,k) to all correct processes

• Every one of n-t correct processes will
echo (i,m,k) at the round r’+1

Implementing CB with n>3t
• Broadcast (i,m,k) at round k: send (init,i,m,k) to

all processes
• if process j receives (init,i,m,k) at round k, it

sends (echo,i,m,k) to all processes
• if before any round r’≥r+1, j has received

(echo,i,m,k) from at least t+1 processes, it sends
(echo,i,m,k) to all processes

• if by the end of any round r’ ≥r, j has received
(echo,i,m,k) from at least n-t processes, j
accepts (i,m,k)

8

Consensus using CB

• Round 1:
– If initi=1, broadcast (i,1,1) to all processes;

• Round r+1, 1 ≤r ≤t:
– If accepted 1 from at least r different processes &&
– has not yet broadcast a message:

W := W ∪ {1}
broadcast (i,1,r+1)

At the end of round t+1:
– If |W|>0, decide 1, otherwise decide 0

Impossibility with n≤3t

• We show impossibility for strong unanimity
– Fischer, Lynch and Merritt
– Found in textbooks

• Impossibility for weak unanimity can be
proved using a similar approach:
– Fischer, Lynch and Merritt
– Section 6.6, Theorem 6.30, Distributed

Algorithms, by N. Lynch

9

n=3

A
S

1

2

3

1

2 3

1’

2’3’

0

0 0

1

11

S1

2 3

1’

2’3’

0

0 0

1

11

10

S1

2 3

1’

2’3’

0

0 0

1

11

S1

2 3

1’

2’3’

0

0 0

1

11

