Number of rounds for
Consensus

Non-Uniform Consensus

* (Non-Uniform) Agreement: No two correct
processes decide on different values

« Validity: If all processes start with the
same value veV, then v is the only
possible decision value

* Termination: All correct processes
eventually decide

(For simplicity and w.l.0.g., V={0,1})

The concept of valency

* Let C be a reachable state of a Consensus
algorithm:

— C is 0-valent (1-valent) if starting from C the
only possible decision value of correct
processes is 0 (1)

— C is univalent if it is either 0-valent or 1-valent
— Otherwise, C is bivalent

Intuition

» Valency is an external observer notion

* |t captures the fact that an algorithm is
committed to a certain decision value at
certain point

« |f no failures are possible then all
executions are univalent

An example

Consider the last week algorithm for n=3,
t<1. Let 0 be the default decision value

Consider an initial state C,=(0,1,1)
What's the valency of C, if no failures are
possible (t=0)7?

What's the valency of C,if t=17

Lemma 1

» Let A be an algorithm that solves NUC and
tolerates at most 1 failure. Then, A has a
bivalent initial state

Assume that all initial states are univalent

By validity, if all processes start from 0 (1),
then the decision value must be 0 (1)

Lemma 1 (cont)

0 O
1 0 O
1 1 1
1 1 1

(
0
0

1
1

0=0
0
0
1=1

There exist two initial states C, and C,’ that differ in the input
value of a single process p and have different valency

Lemma 1 (cont.)

Assume w.l.0.g. that all processes decide O
in all executions starting from C, and 1 in
all executions starting from C’,

Let o (') be an execution starting from C,
(C’,) where p fails before sending any msg

For all processes g#p a is indistinguishable
from o’ (¢ ~a’) = all correct processes
decide the same value in both o and o’

#Rounds for N-U Consensus

« Synchronous system S with
— N process
— At most t<n-2 stopping failures
— At most 1 process fails at each round
Theorem 1: There does not exist an
algorithm that solves NUC and decides in t
rounds in S

By contradiction: Let A be such an algorithm

Lemma 2

* In any execution of A, the state reached
after t-1 rounds is univalent
Proof:
044 a t-1 round execution of A
Co: the initial state of a4
C..1: the state reached after o,

C.., is bivalent (by contradiction)

Proof of Lemma 2

CO
Rounds 1... t-1 |
|
C
e
Round t
R
[0]
o o, a,

q r
(D a,=a, = qdecidesOine; (2) a,=a, = rdecideslin o]

Lemma 3

* There exists an execution o of A such that the
state reached after t-1 rounds of a is bivalent

Proof: By induction:
0,=C,: C, is the initial bivalent state of Lemma 1

o, k-round, Oskst-2, execution of A
C,: the state reached after o,

If C, is bivalent, then can extend a, into o4
such that C, ., is bivalent

Proof of Lemma 3

o Bivalent

Rounds 1... k, 0<kst-2

« . Bivalent

Round k+1: p\\‘ # % %q &\‘
(S CERRRTIC P [PRRe I PIs PR s I s 0

Proof of Theorem 1

« By Lemma 2, in any execution of A, the
state reached after t-1 rounds is univalent

« By Lemma 3, there exists an execution o
of A such that the state reached after t-1
rounds of o is bivalent

* A contradiction

Number of rounds for Uniform
Consensus

Uniform Consensus

* (Uniform) Agreement: No two processes
decide on different values

« Validity: If all processes start with the
same value veV, then v is the only
possible decision value

* Termination: All correct processes
eventually decide

(For simplicity and w.l.0.g., V={0,1})

The System Definition

« Synchronous system S with
— N process
— At most t, 1<t<n, stopping failures
— At most 1 process fails at each round

— Messages sent by a faulty process are lost by
prefix of processes: 1,...,l, where 1<I<n

» Let A be an algorithm that solves UC in S

#Rounds for Uniform Consensus

Theorem 1: For every f, 0sf<t-2, there exists
an execution of A with f failures in which it
takes at least f+2 rounds for all correct
processes to decide

Actions and States

« Environment actions: (i,[K])
— process i fails and messages to 1,..., k are lost
—(0,[0]) nobody fails

» Each (global) state x of A is a vector of
process states [X,,...X,] where X; is the
(local) state of process i

Executions ()

* If x is a reachable state of A, then (i,[K]) is
applicable to x if i is non-failed in x and t is
not exceeded
—(0,[0]) is always applicable

» The state of A after r rounds from an initial
state x, is completely determined by
(i1,[K4])s-- -, (i, [K.]), where (ij,[kj]) IS an e.a.
applicable in round j, 1<) <r

Executions (ll)

* X is a reachable state of A and (i,[k]) is
applicable to x,

x-(i,[k]) denotes the state reached after
running A for one round from x with (i,[K])

- Execution: X (i,[k,]) -... (i,[K]) ...

Similarity

» Let x, y be two states of A

« x and y are similar, x~y, if there exists at
most one process j such that x#y;, and at
least one process i#j is non-failed in both x
andy

* A set X of states is similarity connected if
the graph (X, ~) is connected

Lemma 1

» The set of initial states of A is similarity
connected

@ o

Coloring

» Each state x is attributed a unique colo
(value) val(x):
— If no failures are possible after state x, then x
is univalent

— val(x) is the value decided in a failure free
extension of x

Lemma 2 (Uniformity Lemma)

o If
— X is similarity connected
— 3 x,x’eX such that val(x)=0 and val(x)=1

— In all states in X exist at least 3 non-failed
processes and 2 can still fail (<t-2 failed)

* Then,
— 3 yeX such that in y-(0,[0]) not all decided

1-round failure-free
extension of y

Proof of Lemma 2

é&@ y y ’X |

« y~y’ and val(y)=0 and val(y’)=1
* y and y’ differ only in state of process j

Claim 2.1: either y or y’ satisfy Lemma 2

Proof of Claim 2.1

« Assume by contradiction:

— All processes decide in both y-(0,[0]) and
y’+(0,[0])
* Two cases:
(2.1.1) j is failed in either y or y’
(2.1.2) j is non-failed in both y and y’

Proof of 2.1.1

Assume w.l.0.g. that j is failed in y’:

y,
/ y \
j* i m g*\‘ j\- ' i m
y-(i,[n]) y-(.[m-11) y-(0,[0]) y*(0,[0])
i decides 1 @

m decides 0

Proof of Claim 2.1.2

\ P
y-(0,0)
R \

m decides 0 Y'(J,[m'1]) Y'(O,O) m decides 1 y’-(j,[m-1])
[o]

2 *
i n
0-valent y-(j,[m-11)-(m,[n]) 1-valent Y’-(j,[m-1])-(m,[n])
no correct process see any difference

i n

Corollary 1

« Theorem 1 holds for f=0

Proof:
(1) The set of initial state is similarity connected
(Lemma 1)
(2) val(0,...,0)=0 and val(1,...,1)=1 (Validity)
]£3) n>t>1 =» n>3=»initially 3 correct, 2 could still
ail

By Uniformity Lemma, there exists an initial state

Y, such that some process has not yet decided
in the 1-round failure-free extension of y,,

Layering

L(x)={x-(i,[K]) : (i,[K]) is applicable to x}
L(X)=UyexL(X)

LO(X)=X; LK(X)=L(L*1(X)), k>0
Define system using layers] '
— X, is the set of initial states

— All executions are obtained '
from L(.) Xa

Lemma 3 (Connectivity Lemma)

o If
— X is a similarity connected set
— No process is failed in X
* Then, forallk,0 <k <t:
— LX(X) is a similarity connected set
—no more than k processes are failed in Lk(X)

Proof of Lemma 3

By induction on k

k=0 is immediate (L°(X)=X)
Assumption: Lk1(X) is similarity connected
and no more than k-1<t processes are
failed in Lx1(X)

Prove:

(3.1) For all xeLk1(X), L(x) is sim. con.
(3.2) x~x’ =» Jyel(x), y'eL(X): y~y’

Proof of Claim 3.2

. "._ I.'I |'|-' I.'I ' a _'|- I_ | _"._ I.'I |i|-'lu'I]
X~ X ’

« x and x’ differ in the state of at most one
process i
— i non failed in both = x:(i,[n])~Xx -(i,[n])
— i failed in x (w.l.o.g.) = x -(0,[0])~x-(i,[n])

Proof of Claim 3.1

Proof of Theorem 1

+ Fix f, 0sf<t-2

« X, is sim. connected (Lemma 1) = L(X,) is sim.
connected (Lemma 3)

« 3Ix, X eX, val(x)#val(x’) (Validity)
* y=x(0,[0]); -...-(0,[0)«
y'=x"+(0,[0]); -...-(0,[0])

« val(y)#val(y’) and y,y’eLf(X,)

« By Lemma 2: 3zeLf(X,) s.t. in the failure free
extension of z some process decides in at least
2 rounds

Remarks

« The connectivity lemma is a general result
for the stopping failure model
» Feature of the model, not of a problem
— Implies f+2 bound for UC
— Implies f+1 bound for NUC (HW1)
— See [Moses, Rajsbaum 98] for more results

» The f+2 bound cannot be obtained using
bivalence alone (see paper)

UC Consensus Algorithms

A simple modification of PS1.1 produces
an early-deciding algorithm for UC for
1<t<n and 0 <f <t (HW2)

— Two special cases when it is possible to do
better: t=1 and f=t-1 (Charron-Bost, Schiper)

 f+1 rounds
— For f=t, we could obviously decide in f+1

Early Stopping

« Early stopping (i.e., halting in O(f) rounds)
is harder than early deciding:

— Requires min(t+1,f+2) rounds for NUC [Dolev,
Reischuk and Strong 90]

« HW2: Modify NUC algorithm to satisfy
early stopping
« HW2: Modify UC alg. to satisfy early

stopping

